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THEORETICAL STUDY OF CORRUGATED PLATES:
SHEARING OF A TRAPEZOIDALLY CORRUGATED PLATE WITH

TROUGH LINES PERMITTED TO CURVE

By Chuan-jui Lin* and Charles Libove#*#*
Syracuse University

SUMMARY

A theoretical analysis is presented of the elastic shearing of a
trapezoidally corrugated plate with discrete attachments at the ends
of the corrugations. Numerical results on effective shear stiffness,
stresses, and displacements are presented for selected geometries and
end-attachment conditions. It is shown that the frame-like deformation
of the cross-sections, which results from the absence of continuous end
attachments, can lead to large transverse bendire stresses and large
reductions in shearing stiffness.

INTRODUCTION

In a previous report (ref. 1) a theoretical analysis was presented
of the elastic shearing of a trapezoidally corrugated plate with discrete
attachment at the corrugation ends on the assumption that the trough lines (mn
in fig. 1) are held straight. This assumption limited the applicability
of reference 1 mainly to the case in which the corrugated plate is
attached to a flat plate along its trough lines.

The present report analyzes again the elastic shearing of a
trapezoidally corrugated plate but removes the assumption that the trough
lines are held straight., Thus the present analysis is applicable to a
corrugated plate alone, rather than to a corrugated plate which is
attached to a flat plate. The removal of this constraint reduces, of
course, the effective shearing stiffness and alters the nature of the
stresses and displacements.

The analysis of reference 1 considered two kinds of conditions along
the trough lines: (a) complete freedom of rotation and (b) complete
suppression of rotation. 1In the present analysis only the first of these
conditions 1s considered, as that is the only meaningful condition for a
corrugated plate alone.

*NDEA Fellow

**Professor of Mechanical and Aerospace Engineering
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As in reference I, three different types of discrete attachment at
the ends of the corrugation are considered. These are illustrated in
figure 2 and may be described as follows:

(1) Point attachments at the ends of the trough lines only (fig.
2(a)), the attachments being consideircd as mathematical points,
providing restraint against displacement but not against
rotation.

(ii) Point attachments at the ends of both the trough lines and
thd ¢rest lines (fig. 2(b)), the attachments again being
considered as mathematical points.

(i11) Very wide attachments at the ends of the trough lines only, as
shown in figure 2(c). This kind of attachment is approximated
in the analysis by means of the idealization shown in figure 2(d),
i.e. by adding, to the end constraints of figure 2(a), end
constraints against vertical displacement (but not against
longitudinal displacement) at the junctions of the trough plate
elements and the adjacent sloping plate elements.

In cases (i) and (ii) no consideration is given to the possibility that the
member to which a corrugation end is attached will interfere with the
deformation of the corrugation.

The analysis is based on the method of stationary total potential
energy. Each cross section is assumed to have certain degrees of freedom
for deformation in and out of the plane of the cross section. By equating
to zero the first variation of the total potential energy, differential
equations and boundary conditions are obtained for these degrees of freedom
as functions of the longitudinal coordinate (z in fig. 1). Solution of
these equations leads to all the desired information.

Numerical results on shearing stiffness, stresses and deformations
for selected families of geometries are presented and discussed.
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SYMBOLS

defined by equations (13b)
coefficients in the displacement equations (C39)

coefficients in equations (B50a) through (B50e)
for displacements; obtained by solving equations
(B52), (B53) or (B54), depending on the type of
attachments at the ends of the corrugations

coefficients in equations (B42) for displacements
defined by the first four of equations (30)
coefficients in equations (C33) for displacements
coefficient in displacement equation (C39)
defined by equations (C8b)

defined by equations (40)

coefficients in expression for Ub (see eqs.
(11) and (12))

defined by equation (B7)

defined by equations (B25)

defined by equations (C7)

defined by the first of equations (Cl4)

defined by the first of equations (C22)

defined by equation (D6)

defined by the first of equations (D17)

obtained by solving equations (B23)

coefficients in equations (D34) for displacements

coefficient in equations (D34) for displacements
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one-half the length of the corrugations
(see fig. 1(b))

defined by equations (40)

coefficlents in expression for Uext (see
eqs. (2) and (3))

defined by equation (B7)
defined by equations (B26)
obtained by solving equations (B23)

characteristic length (taken as pitch p in
numerical work)

coefficients in expression for USh (see eys.
(5) and (6a))

defined by eguation (B7)
defined by equations (B27)
defined by equations (32)

defined by equations (B60)

frame flexural stiffness; see equation (14)
obtained by solving equations (B23)
defined by equations (D23) and (D24)
defined by equations (C28) and (C29)

coefficients in expression for Ug, (see egs.
(5) and (6b))

defined by equations (B28)
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defined by equations (B62)
defined by equations (BS8)

Young's modulus associated with frame bending
of the cross sections

Young's modulus associated with longitudinal
extension

coefficient in equations (B42), (B50a), (B50b)
and (B50e) for displacements

defined by the last of equations (30)

one-half the width of the trough plate element
(see fig. 1(a))

defined by equations (A2)

coefficients in expression for U, (see egs.
(9) and (10))

coefficient in expression for Ug, (see egs.
(5) and (6¢))

defined by equation (B7)

defined by equation (D5)

defined by equations (B30)
defined by equations (B29)
defined by equation (D17)
defined by equations (B62)
defined by equations (C6)
defined by equations (Cl0)

defined by equation (C14)
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defined by equations (C22)

shear force (see fig. 1(b))

width of the crest plate element (see fig. 1(a))
defined by equation (B7)

functions of z defined by equations (31)
functions of z defined by equations (31)

shear modulus associated with middle surface
shear of the plate elements

shear modulus associated with torsion of the
plate elements

defined by equations (39)
defined by equatioen (B7)
height of corrugation (see fig. 1(a))

defined by equation (B7)

torsion constants of plate elements 01, 12, 23
respectively (see eqs. (7) and (8))

defined by equation (B7)

width of the inclined plate element (see fig. 1(a))

coefficients in characteristic equations (B12)
and (B20); defined by equations (B13)

defined by equation (B7)
defined by equations (€21)

defined by equations (D16)
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equations (B24)

equations (C27)

equations (D22)

equation (B7)

equations (B56)

equations (B55a) through (B55d)
equation (B58)

equations (B57a)

equations (B57b)

equations (B59)

equations (B9)

real numbers defined by equations (B46) through
(B49); obtained by solving equations (B23) with
3 = 1 and 5 and noting equations (B31)

defined by equation (C4lb)

defined by equations (C4la)

pitch of corrugation (see fig. 1(a))

developed width of one corrugation, 2e + 2k + £

defined by equations (B10)

real numbers defined by equations (B46) through
(B49); obtained by solving equations (B23) with
j = 1 and 5 and noting equations (B31)

defined by equation (D37)

defined by equations (D36)



al’ ;2’ 33, a4 defined by equations (Bll)

'R variable in characteristic equation (B20)
Rj(j-l,Z,...,lo) roots of characteristic equation (B20)
Ri complex conjugate of R1
Rg complex conjugate of R5
i variable in characteristic equation (C19)
ij(j=l,2,...,6) roots of characteristic equation (C19)

i variable in characteristic equation (D14)
ﬁj(j-l,Z,...,6) roots of characteristic equation (D14)
r = R/c variable in characteristic equation (B12)

r, =R, /e (j=1,2,...,10)

k| h|
; = i/c
;=I1/c

s, $, 8, 8 real numbers defined by equations (B46) through
(B49); obtained by solving equations (B23) with
§ = 1 and 5 and noting equations (B31)

81> 52’ 53 transverse cuvordinates along the cross-sectional
centerline (see fig. 3(a))

53, g} defined by equations (B60)

TPE total potential energy of a single corrugation

B C TD E

T, T, s T real numbers defined by equations (B46) through
(B49); obtained by solving equations (B23) with
j =1 and 5 and noting equations (B31l)

t thickness of corrugation (see fig. 1(a))

N N

tu, tx defined by equations (B60)
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strain energy of an entire corrugation (see
eq. (15)); also real part of R; and Ry when
R} and Ry are complex (see eqs. (B44))

strain energy per unit length of corrugation
associated with frame bending of the cross
sections (see eq. (11))

strain energy per unit length of corrugation
associated with longitudinal extension (see
eq. (2))

strain energy per unit length of corrugation
associated with middle surface shear (see

eq. (5))

strain energy per unit length of corrugation
associated with torsion (see eq. (9))

longitudinal displacement

one-half the relative shearing daisplacement of
two adjacent trough lines (see fig. 3(b))

longitudinal displacement (function of z) along
junction line (see fig. 3(b))

longitudinal displacement (function of z) along
junction line (:) (see fig. 3(b))

imaginary part of R;, negative of imaginary part
of R, when R; and R, are complex (see eqs. (B44))

functions of z defined by equations (33)

parameters defining the deformation of the cross
section in its own plane (functions of z) (see
fig. 3(c))

function of z defined by equation (C48)
function of z defined by equation (D44)

real part of R. and R6 when Rg and Rg are complex
(see egs. (B44§)
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transverse coordinate (see fig. 1(b))

imaginary part of Rg, negative of imaginary part
of Rg when Rg and Rg are complex (see eqgs. (B44))

longitudinal coordinate (see fig. 1(b))
defined by equations (B61)

defined by equation (13a)

defined by equations (B61)

defined by equations (B61)

defined by equations (B61)

defined by equation (C8a)

shear strain

shear strain in plate elements 01, 12, 23
respectively

computed from equation (B23) and (B32);
representable by equations (B46) through
(B49) when Rl’ Ry, .» Rg are complex

) B C D E R
complex conjugates of Yis Y10 Y1 Vg respectively

complex conjugates of Yg’ Yg, yg, yg respectively
defined by equations (C29)
defined by equations (D24)

longitudinal strain

longitudinal strain in plate elements 01, 12, 23
respectively
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defined by equations (B2)

angle between sides of corrugation and horizontal
(see fig. 1(a))

defined by equations (Bl4) through (B18)

Poisson's ratio, taken as .3 for numerical work

defined by equations (B40)
defined by equation (C37)

defined by equation (D32)
cross-sectional normal stress

cross-sectional normal stresses (functions of z)
along junctions and (:) respectively

extreme-fiber bending stresses (functions of z)
at junctions and (:) respectively, resulting
from frame bending of the cross sections

middle-surface shear stress

middle-surface shear stresses in plate elements
01, 12, 23 respectively

extreme-~fiber shear stresses due to twisting of
the plate elements 01, 12, 23 respectively

rate of twist

rate of twist of plate elements 01, 12, 23
respectively

factor in shear-stiffness equations (29) and
(B63a); defined by equation (B63b)

factor in equation (C42) for shear stiffness;
defined by equation (C43)

factor in equation (D38) for shear stiffness;
defined by equation (D39)

relative shearing stiffness, i.e. the ratio of
shear stiffness of the actual corrugation to that
of an identical corrugation with uniform middle-
surface shear sgrain
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ANALYSTS

The plate is assumed to be composed of infinitely many identical
corrugations, all deforming in an identical way, and the analysis may
therefore be based on a single corrugation. The form of the corrugation
is shown in figure 1, A single corrugation is considered to be that portion
between adjacent trough lines (lines labeled mn in fig. 1). The numbering
system for the salient points of the cross section of a single corrugation
is shown in figure 3(a). The notation for the geometry of the corrugation
and coordinate systems is shown in figures 1 and 3(a).

Considering a single corrugation, the shearing of this corrugation
is imagined to be effected by a longitudinal shift of the trough line at
station C) through a distance u, 1in the positive-z direction and a
similar shift of the trough line at station (:) in the negative-z direction,
as shown in figure 3(b). Thus the total shearing displacement of one
trough line with respect to the other is 2up . The end-points of tne
trough lines (points m and n in fig. 1) are moved only longitudinally.
However, the rest of the points of a trough line are permitted to move
both longitudinally and laterally, subject to certain constraints arising
from the symmetry of the corrugation with respect to a vertical plane
through the crest line (m'n' in fig. 1), the antisymmetry of the imposed
displacements with respect to this plane, the requirement of continuity
between adjacent corrugations, and the requirement that all corrugations
deform identically. These considerations and requirements lead to the
following constraints on the deformations of the trough lines:

(a) The longitudinal strain is zero everywhere along a trough line.
(b) The vertical displacement is zero everywhere along a trough line.

(c) The trough lines at stations (:) and (:) curve into identical
shapes.

Certain deductions can also be made regarding the mutual internal
reaction acting along the common trough line between two adjacent
corrugations. These lead to the conclusion that, while there are an
unknown longitudinal shear flow distribution and an unknown vertical shear
distribution along the trough lines at stations (:) and (:) » there is no
horizontal running tension nor any bending moment transferred from one
corrugation to the next across a trough line.

Figure 4 shows schematically the type of linkage system that can be
imagined to exist along the edges of an isolated corrugation in order that
the isolated corrugation satisfy the above conditions and represent a
single one of the infinitely many corrugations of the corrugated plate.

Assumption regarding longitudinal displacements. - The longitudinal
(z-wise) displacements at stations and (:) of any cross section are
tug and -u; , as already discussed. The longitudinal displacements of
the other middle-surface points of the cross section are assumed to

12



vary linearly between stations. These longitudinal displacements are
shown in figure 3(b), which also shows their assumed antisymmetrical
nature consistent with the antigymmetrical nature of the presecribed
displacements at stations (:) and (:) . Therefore the longitudinal
displacements of all middle-surface points of the corrugation are defined
by one prescribed displacement parameter ug and two unknown functions
of z: uyg (z) and up(z) . If the resultant longitudinal shearing force
F (see fig. 1(d)) is regard as prescribed instead of wugp , the latter
will become an additional unknown.

Assumptions regarding displacements in the plane of the cross
section. -~ Especially near the ends, the cross sections can be expected
to undergo significant flexural deformations in their own planes, somewhat
in the manner of a rigid-jointed frame. Therefore the deformations of a
cross section in its own plane will be assumed to be inextensional, as is
done in frame analysis. Certain degrees of freedom will be assumed for
the displacements of stations (:) through (:) , consistent with the
expected antisymmetry of the deformation pattern, and the displacements
between stations will be assumed identical with those of the correspondlng
rigid~jointed frame, hinged at statioms (:) and (:) .

Three degrees of freedom are sufficient for this purpose, and
figure 3(c) shows the three selected, as viewed from the positive end
of the z-axis. The first two of these degrees of freedom are the same
as employed in reference 1. The third is a rigid-body translation, of
amount vo(z) » required because in the present analysis the trough lines
are permitted to curve in the horizontal (xz) plane. Thus the displacements
in the plane of the cross section are completely defined by three unknown
functions of =z : vl(z), v2(z) and vo(z) .

Middle-surface extensional strains. - Referring to the foregoing
assumptions regarding longitudinal displacements, and using the
coordinate system of figure 3(a), the longitudinal displacements u
for all points of the middle surface can be expressed in terms of up ,
uj(z) and up(z) . The expressions for these longitudinal displacements
are given in the second column of table 1. The corresponding extensional
strains & are obtained by differentiating these displacements with
respect to z , and the resulting expressions are given in the last column
of table 1. Because the longitudinal strains are antisymmetrical with
respect to the crest line, it suffices to consider explicitly only the
three plate elements listed in table 1.

TABLE 1. - LONGITUDINAL DISPLACEMENTS AND STRAINS

Plate element Displacement, u Strain, €
o Y T ;“‘1 ~ %) ;‘dizl !
12 uy * ;l(uz - uy) j:l * ;[222 3‘211]5 €
23 u (l - 28—3) -d—ug[l - Eii]i €
2 £ dz £ 3

13




Middle-surface shear strains. - The shear strains <y of the middle
surface of the plate elements of the corrugation, obtained from both the
longitudinal displacements and the displacements in the plane of the
cross section, are given in table 2. It is seen that they are constant
across the width of any plate element (i.e., independent of sj, 82, and
s3 ), as a result of the assumptions that u varies linearly between
stations and the cross-sectional deformation is inextensional.

TABLE 2. - SHEAR STRAINS

Plate element Shear strain, ¥y |
12 2 ; % - g;{vocose) + g;{vlsine) = Yy
23 - E;Z,_ g;g-+-%;(vlsinecose) + %;{vzsine) 2 v,

Rate of twist of the plate elements. - If the corrugation length
(2b) is several times the pitch (p), it can be argued that the torsiomal
strain energy will be a small fraction of the strain energy due to the
flexural (frame-like) deformations of the cross sections.* Therefore,
in computing the torsional strain energy of a plate element, it is
probably sufficiently accurate to assume a constant rate of twist across
the width of the element rather than to consider the detailed variation of
rate of twist across the width. This constant rate of twist will be taken
as the overall rate of twist corresponding to the displacements of the
longitudinal edges of the plate element. For example, the rate of twist

v

of the plate element 0l will be taken as %ng;] » in accordance with

the edge displacements shown in figure 3(c) for this plate element. The
rates of twist ¢ obtained in this manner are given in tab.e 3,

*The numerical results of reference 1 are consistent with this deduction.
The same deduction is arrived at in reference 2,

14




TABLE 3. - RATES OF TWIST

Plate element Rate of twist, ¢
d Vl} -
01 dz(e - ¢1
d v2 d vlcose
. 4 - 5T
dz\k dz k 2
2v sin26 2v,cosd
23 Sl OO
dz f dz f -3

Strain energy components. — As in reference 1, the strain energy of
the corrugation is assumed to arise from the following four sources:
(a) middle~surface extension of the plate elements in the longitudinal
direction, (b) middle-surface shear of the plate elements, (c) twisting
of the plate elements, and (d) frame-like bending of the cross sections.
Expressions are developed below for the density (i.e. strain energy per
unit length of corrugation) due to each of these sources. In developing
these expressions, use is made of the fact that plate elements 34 and 45
contribute the same strain energy as plate elements 12 and 0l respectively.

(a) Strain energy due to middle~surface extension: The strain
energy, per unit length of corrugation, due to the longitudinal strains of
the middle surface is

e k £
l 2 2 1 2 ,
= ! —
Uext E't J elds1 + J szds2 + 5 Jo s3ds3 (1

where E' is the Young's modulus associated with longitudinal extension,
€1, €2>€3 are defined in table 1, and s3, sy, s3 are coordinate shown
in figure 3(a). 1In writing equation (1), middle surface normal stresses
in the transverse direction have been assumed negligible. The prime on
the Young's modulus symbol is a tracer to distinguish this Young's modulus
from the Young's modulus associated with frame bending.

Substituting the expressions for €3, €9, and €3 from table 1 and
performing the integrations, one obtains

du.y2 du, du du, . 2
- -t L1 2 2
Vext = bll[dz ] P @ b22[dz ) 2)

15




where

\
- 1 k.

bll = 3 E'te(1 + )

b = Lag > (3)

12 6

b.. = ZE't(2k + £)

22 6 y,

(b) Strain energy due to middle-surface shear: The strain energy,
per unit length of corrugation, due to the middle-surface shear strain is

_ 2
Ush = Gt(yle + ‘yzk + = 2 st) Y)

where G 1is the shear modulus associated with middle~surface shear and
Y1s> Y23 Y3 are the plate-element shear strains given in table 2. Substituting
for the strains their expressions from table 2, one obtains

_ 2 2 2
Ush = cOOuO + cllu1 + c22u2 + 2c01u0ul + 2c12ul 2
dv dv dv
0 0 0
*doot 3z T Y0% 3z T Y20%2 G
dv dv dv
vy vy 2
tduy g AUy g T dyoty 3;
dv_\2 dv,y2 dv,_ 12
0 1 2
t3 ——— ——s
* eoo( & ] * e’l‘l(dz ] * e22[dz J
dv, dv dv,, dv dv, dv
1 Yo 0 1 2
K —— —— —— e K ———— e
t2¥ 3 d= T2 az T %N dn dr (%)
where
t t e 3
o = €% ¢y T €+
- t t
2 = SG*+27) \ (62)
- _-pt = -gL
%1 - ~F3 €12 G %
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\
dOO' = 2Gt dlo = = 2Gt(1 - cosb)

d20 = 2Gt(1 - cos8) d11 = d22 = - 2Gt sinb r (6b)
d21 = 2Gt sin®(1l - cosH) j

2. . f )
* = —_
8o Gt(e + k cos“ 9 + 2)
2 f 2
* = Xz
e¥; Gt sin“o6(k + 5 cos 8)
1 2
* = =
e22 5 Gtf sin“o
> (6¢)
1
* = - =
elO 5 Gt(2k + f)sinbcosd
e* = - l-th sinb
20 2
e¥ = l-th sin26 cosb
12 2 )

(c) Strain energy due to twisting of the plate elements: The strain
energy, per unit length of corrugation, due to twisting of the plate elements
is

2 2 1\, .2
= ' =
Ut GH(JT14y + Jpb, + 5V 583 )

\

1
where G' is the shear modulus associated with}torsion (the prime being
a tracer to distinguish it from the shear modulus G associated with
middle-surface shear); J1s J2, J3 are the torsion constants of plate
elements 01, 12 and 23 respectively, considered as bars of narrow rectangular
cross section; and ¢4, ¢9, ¢3 are the rates of twist given in table 3.
Substituting the expressions from table 3 for the rates of twist and

3 3

- 1 1 - 1
J—3et J 3kt J—3ft

1 2 3 (8)

for the torsion constants, one obtains
dv_\2 dv,\2 dv. dv
- = |1 s |2 e 1 _2
Yew = ell(dz) * e22{ dz ) Y2 % W@ )

17



in which \

J J 2J
ell = G'(—‘,],_' + _122 cosze + —23 sin49]
e k f
J 2J
;éz = G'[—2-+ —Eé-cosze) (10)
k f
J 2J
EiZ = G'{—%—cose - -Eé sinzecose)
k £

(d) Strain energy due to frame bending of the cross sections:
Considering a unit length of corrugation to be a rigid-jointed frame
whose joint displacements are a superposition of the three modes shown
in figure 3(c), while the joints are permitted to rotate freely, one
obtains for the strain energy a quadratic expression in wvj and v, .
(vg is absent from this expression because it represents a rigid body
translation.)

The derivation of this expression is given in appendix A of reference
1 and will not be repeated here. In that derivation a parameter o 1is
used which has the value 0 or 1 according to whether joints C) and C)
are hinged or clamped. Only the case o = 0 1is pertinent to the present
analysis. Setting o equal to zero gives the following expression for
the strain energy, per unit length of corrugation, due to frame-like
bending of the cross sections:

- 2 2
Ub = a;vy + 2a12v1v2 + a,5,v5 (11)
where
2 2
_ D e 2 el . &4 N
a;; = 82e3[éll + A22[kJ cos"6 + 4A33[fJ sin 6
- A 2 coso + 24, . 22 sin6coss - 2a.. S sin%0
12 & ©°% 23 k £ 50 ¥¢° 13
2 2
- D e - e 2
a, = 32e3[A22[kJ cos® 4A33[fJ sinZ6cos® \ (12)
1 e e e 2 2 e
-3 A12 T A23 E-f(cos 8 ~ sin“e) + A13 5 cosé]
2 2
= D e e 2, _ ee
329 82e3| Azz(kJ + "Asa(fJ cos™® - 28,3 1 % °°S°:, y,
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with

B

11

22

33

12

13

23

The

unit length of corrugationm.

e e e e
= lZE(1+k)+6?(3+4k)

ee & & e &2 e ey2
= 216 TG +2PRE+3P +ERQGC+2P

- ece ey & e €121 408y2 ee
= 216 k(k + 6 f)(2 i + 3 f) + 144(k) [3(k) + 30 XTI

reeu®’ SE+2 D

_ een e e ey2 e
= 432kf(2k+3f)+144() S

e e
K (12E+21 ?)

+ 864(§)3 SE+2D

e e e e
= = 432 E(k + 3 E)(Z K + 3 =

e 2.,e e, e e

_ ee, e e e,2 e e e
= 4320 3Q@ 3P +864D FE + 2D

e e e e 5,82 e e e
- 1296 X f(2 X + 3 f) - 288(£) -E(ls " + 27 §0

e 3 e,e e
- 1728(*E) f(E + 2 ?)

(13a)

+ 45(9) 2]

> (13b)

symbol D appearing in equations (12) represents the frame
flexural stiffness of the corrugation per unit width of frame, i.e. per

A detailed discussion of the symbol D has

been given in reference 1, where it is concluded that an appropriate
value for D 1s the plate flexural stiffness, i.e.

where E

Etd

D = —————
121 - vz)

(14)

and v are Young's modulus and Poisson's ratio, respectively.
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Total strain energy. — The total strain energy U -of a single
corrugation can be obtained by integrating the sum of the foregoing
strain energy densities over the entire length of the corrugation. I.e.,

b
U = I_b (Uext + Ush + Utw + Ub)dz (15)

where Ugyxts Ughs Uty, Up are defined by equations (2), (5), (9) and (11)
respectively.

Total potential enmergy. — The potential energy of the prescribed
shearing forces F along the sides of a corrugation, whose relative
longitudinal displacement is 2uy , equals -2Fu, . Adding this to the
above strain energy U gives the total potentia? energy (TPE) of a single
corrugation as

TPE = - 2Fu0 +U (16)

Minimization of the TPE. - The TPE as defined by equation (16) is a
functional of ug, uj(2), uz(z), vo(z), vi(z), v2(z) . In accordance
with the method of minimum total potential energy (ref. 3) the "best"
values of these quantities will be those which minimize the TPE. To
obtain these "best' values, the technique of variatiomal calculus may
be used to form the first variation of TPE due to variatioms in ug, uj (z),
uz(z), vg(z), vi(z), vp(z) and equate it to zero. This will lead to a
system of field equations (primarily differential equations) and boundary
conditions defining wug, u3(z), ..., vy(z) .

The detailed execution of this procedure is given in appendix A.
The resulting field equations, equations (Al2) and (All) of appendix A,
are repeated here for convenience:

2 2

b ‘ 1 +5b ! 2 - l-d EZQ-- l-d dvl - c..u, - ¢, .U = c.,u )
11 . 2 12 2 2 710 dz 2 711 dz 111 1272 010
dz dz
2 2
d d
b2y fy 1 Mo 1, M, T
12 2 22 2 2 720 dz 2 21 d=z 2 22 dz 1271 2272
dz dz
dzv0 dzv1 d2v2 1 dul 1 du2
e + e + e +=d, . —+=d..— =0 % (17)
00 dzz 10 dzz 20 dz2 2 710 dz 2 20 dz
ay a?y a2y du du
e 0 + e 1 + e 2 + l-d -—l-+-l d 2 _ a,..v, — a, v, =0
10 , 2 11 . 2 12 2 711 dz 2 21 4z 1171 1272
dz dz dz
d2v dzv dzv du
QoI ten Tt ey oty 223z~ %12¥1 " %Yy = O
dz dz dz z
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and

b
2c00u0b'+ o1 J‘ u,dz = F (18)

Different sets of boundary conditions are obtained in appendix A,
depending on the nature of the end attachments. If there are point
attachments at the ends of trough 1ines only (fig. 2(a)) the boundary
conditions at z = *b are

du du
1 2
= -2 z -0 (19)
vy = O (20)
dvo dv1 dv2
Ze10az T 281 3; Y g tdpsp tdyy, =0
(21)
dv dv dv
0 1 2 —
2803z T 28103z T2y Ty, =0

If the attachments at the ends of the trough lines are wide as idealized
in figure 2(d), it is only necessary to replace the first of equations
(21) by the condition

v, = 0 (22)
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Finally, if the attachments are as shown in figure 2(b), namely point
attachments at the ends of both the crest lines and the trough lines,

the boundary conditions are

du du

1 2 _
re 0 y &= =0 (23)
Vg = 0 (24)

vlcose + v, = 0 (25)

dv0 dv1 dv2

2(e10 - ezocose)azr-+ 2(e11 - elzcose)E;— + 2(e12 - e22cose)E;—
+ dllu1 + (d21 - d22cose)u2 = 0 (26)

The physical meaning of these boundary conditions is discussed in appendix A.

Solution of equations. - Essentially, the basic solution of the problem
consists of solving equations (17) for u;(z), uy(2z), vo(z), vi(z), va(z)
in terms of ugQ , subject to appropriate set of boundary conditions. Thé™
solution for uj(z) 1is then substituted in equation (18), which then gives
ug in terms of F or F in terms of ug .

The system of simultaneous differential equations (17) is linear with
constant coefficients, and it can therefore be solved in a straight-forward
manner. The full details. of the solution are in appendix B, and only the
main features of the solution (those needed for computational purpose) will
be cited. here.

The numerical realization of the solution requires that equation (B20)
be solved for its eight non-zero roots, Ry, Rz, ..., Rg . In equation (B20)
¢ 1is any characteristic length (c was taken equal to the pitch p in the
subsequent calculations) and the coefficients ko, k2, etc., are functions of
the ratios of the elastic constants and of the parameters defining the basic
shape of the cross section, i.e. 6, t/c, e/c, k/c and f/c . These
coefficients are defined by equations (B13). Because only even powers of
R appear in equation (B20), four of these roots are the uegatives of the
other four, as stated in equations (B2la).
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For most cross~sectional geometries of interest Rj through Rg are
complex, and therefore the further description of the solution will pertain
to that case. For a description of the solution procedure in the general
case the reader 1s referred to appendix B.

When R; through Rg are complex, they come in conjugate pairs, and
therefore four of them have the representation shown in equations (B44)
with U, V, X and Y real numbers. Equations (B44) and (B2la) provide a
complete representation of all eight roots.

With U, V, X and Y known, the displacement ratios ul(z)/uo , etc.
can be computed from equations (B50) in which 3 and g2 are defined by

equations (B2); &7 and £7 are defined by equations (B40); pB>C>D,E

QB’C’D’E , SB’C’D’E and TB’C’D’E are obtained by solving equations (B23)
for j =1 and 5 and noting equations (B31l) and (B46) through (B49); and
Al/u0 . Al*/u0 , As/u0 s A7/u0 . Elo/u0 are obtained by solving equations
(B52), (B53) or (B54), depending on the type of end attachments.

Relationship between F and u - Equations (B50) give the displacements

0"
due to a prescribed value of wuyp , i.e. a prescribed value of half the
relative shearing displacement of the two sides of a corrugation. For
determining the displacements produced by a prescribed shearing force F ,
one needs the relationship between F and ug . This relationship i;\giv$¥
by equations (B63) when Rj through Rg are complex. The symbols sv , sy,
etc. in equations (B63b) are defined by equations (B60).

Equation (B63a) gives the overall shearing stiffness F/2ug of a
single corrugation. One can define a dimensionless shearing stiffness
parameter § as the ratio of the actual shearing stiffness of a single
corrugation to that of an identical corrugation having continuous end
attachment producing uniform shear gtrain throughout the corrugation. The
uniform shear strain of the latter corrugation due to the relative shearing
displacement 2ug of its sides is 2up divided by the developed width
p' = 2e + 2k + £ . The shear force F' required to maintain the relative
shearing displacement 2ug is therefore Gt+2b-2ug/p' , which implies the
following shear stiffness for the continuously attached corrugation:

' -
gu _ Gt'Zb (27)
0 P
The relative shearing stiffness of the given corrugation is defined as
F/2u0
Y] fT7EEa (28)
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Eliminating numerator and denominator of this expression via equationms
(B63a) and (27) respectively, one obtains

- v kK, 1%
2 = = A++zov (29)

Stresses. — With the displacements ul(z), uy(z), etc. determined,
the stresses in the corrugation can also be obtained. Expressions for
the various stresses will now be given, again restricted to the case in
which the non-zero roots of the characteristic equation are complex. In
order to avoid lengthy equations, the following short-~hand notatioms will

be employed: 3\
. A
Al = u—l cosh —
0
. A
A4 = u—4 cosh EUB
0
. A
- 5 Xb
A, =~ cosh > (30)
0
- A
A8 = ] cosh c&
Yo
T
10 ° /
f (z) = sinh Uz sin Yz f (z) = sinh Xz sin Xz
88 c c ss c c
f (z) = sinh Oz cos Yz f (2) = sioh Xz cos Yz
sc c c sc c c
(31)
f (z) = cosh Uz sin Yz f (z) = cosh Xz sin ¥z
cs c c cs c c
f (z) = cosh Uz cos Jz f (z) = cosh Xz cos Xz
cc c c cc c c
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and

¢y = cosh %E

cx = cosh —

;l(z) = -(A4PC - AlQC)
+ (ags® - AT

\;z(z) = (AAPD - AlQD)
+ (Ags" - AT

v, = 42" - adh
+ (ags® - AT
+ élo

The longitudinal normal stresses
(see fig. 3(a)) are given by

U + v'fcc . C
+(A1P.+
+Y ~
C) ssc ce (ASSC
X
U +VE _
S+ (AP +
+Y £ -
D) ssc cc + (ASSD
X
U +VE -k
€+ AP+
1
+Yf -
E) SSs cec o & SE
cx 5

(32)

c(:) and c(z) , along junctions (:)
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Substituting for wuj and up their expressions (eqs. (B50a) and (B50b)) gives

(35a)

~ B, T .B
(AlP +A4Q)

~ B 7 .B
+ (AS” + AST)

These stresses are positive if tensile.

The middle-surface shear stresses in the plate elements making up the
corrugation can be determined from the shear strains of table 2 and the

displacement equations (B50).
T0l, T12 and 123 respectively.

them:

12
Gu

&

These shear stresses will be denoted by
The following expressions are obtained for

.t T . £ . £
c ; ce e B EG .83
G, - 1% A, -SE 44 284k o

(36a)

. . f
= Hlgy -t [AfPB -+ A4QB]c_;£

~

£ . £
~ B ~ Bass B ~ Bq cc
+ [a,@° - 1) - A,Q I—CU + [ag(s” = 1) + AT ]—_“x

£
~ B ~ Ba'ss - ~ - ~
+ [A8(S - 1) - AT };_X— + (g, - gl)Elo} + vlsine ~ vocose (36b)
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c £ f

T ~ ~ ~ ~
23 c n pB B, cc B _ B, "ss
Gu - =2 ?{CZ + (Alp + A4Q )c + (A4P A1Q )cU
0 U
+ (A sB+R'TB)i:—°-+ (a.s® - A.TB)£5—-5—+ EE )
5 8 Cy 8 5 cx 2710

4+ V,8ind6 + V.sinbcosd - V

2 1 (36¢c)

0

The positive sense of 135, 1s shown in figure 5. The positive senses of
the other two shearing stresses are the same as that of To1 -

The extreme-fiber shear stresses due to torsion will be denoted by
161, Tiz and Té3 for plate elements 01, 12 and 23 respectively. They
can be obtained by multiplying the rates of twist in table 3 by G't
(ref. 4) and substituting equations (B50) for the displacements. The
resulting expressions are

T!.¢c
01 _ tZ
G'u,. e V1 (372)
0
! ¢
12 . _ . =
G'UO = k(V2 + Vlcose) (37b)
TéBC .~ 2 .
G'uo = -2 ?(Vlsin 6 - Vzcose) (37¢)

The positive sense of 7137 1s shown in figure 5 as an example to indicate
the positive senses of all three torsional shearing stresses.

Due to frame-like deformation of the cross sections transverse bending
moments are developed which vary linearly between stations and are zero at
stations (:) and (:) . The transverse bending moment (per unit length of
corrugation) at any station other than (:) and (:) is a linear function of
v1(z) and vy(z) (vg playing no role because it represents a rigid-body
translation of the cross section). The associated extreme-fiber bending stress,
obtained by multiplying the bending moment by 6/t2 , will also be a linmear
function of vj and vy . The extreme-fiber transverse bending stresses at

27



stations @ and @ will ;be denoted by o,/ and o4 and will be

considered positive if they are tensile in the lower fibers (see fig. 5).
Expressions for these stresses in terms of v; and v2 can be obtained
directly from equations (56) of reference 1 with the parameter o therein
set equal to zero. The resulting expressions are

O@C
Eu, 81 82 TN
= 1 tc
- 2ee - (38)
, l-v
O@C
Eu, 831 83 voly,
- p— S a— L. -

where v]_/u0 and v2/uo are now given by equations (B50c) and (B50d),

and the gij matrix elements are defined as follows:

\
le e e 2
= = £ - e 8 — e
g21 3 kE’Zal + bl (Za2 + b2)k cos (4a3 + 2b3)f sin (il
e, 2
- 3(E) cosf
= ler e e - 382 y (39)
8, = 3 E[ (2a, + b,)p + (4a, + 2b,)3 cose] 3Q)
- 3e - & - & 2,y _ 682 2
83y < 3 f(bl b2 . cosb 2b3 £ sin”~6) 6(f) sin™®
g = 22(-b, 24 2b, 2 cost) + 6(2)2 coso
32 BE 2k 3f 3 ~
with w
= - e £
a, = 6(2 3 f)
= ee &
a2 = 12 k(k + 3 f)
= ee
a3 = L2y%
b, = 6= [ 4
1 - k
_ e, e
b2 = -6 E(Z X + 3)
= -6 &1 &
by = -6 EeFH J




Special cases. — The above results apply to the general case in which
none of the dimensions e, f, and k 1is zero (fig. 6(a)). Analyses for
the special cases £ =0 (fig. 6(b)) and e = 0 (fig. 6(c)) are contained
in appendixes C and D respectively. 1In these appendixes only the end
conditions of figure 2(a) needed consideration. Those of figure 2(b) are
equivalent to continuous attachment when e or f approaches zero,
because of the resulting complete suppression of the deformation of the
end cross sections in their own planes. The end conditions of figure 2(d)
are similarly equivalent to continuous attachment if f approaches zero,
or to those of figure 2(a) if e approaches zero.

The main results from appendixes C and D will now be cited.

The special case f = 0 leads to a sixth degree (rather than a tenth
degree) characteristic equation, (C19), with six roots in the form (C23)
and (C24). The numerical computation of the four non-zero roots can be
done by means of the quadratic formula. With the roots determined, the
relationship between the arbitrary constant (A!, D}, and E!) can be
obtained from equations (C28) and (C29). Equatlons (C39), with Al, Ké,

and A} defined by (C40), then give the displacements uj(z), vp(z) and
vg(z) . Equations (C42) and (C43) give the basic shearing stiffness, and
equations (C45) through (C49) give the stresses.

The special case e = 0 also leads to a sixth degree characteristic
equation, (D1l4), which has six roots (Ri, ..., Rg) with the properties
shown in equations (D18) and (D19). The four non-zero roots can be easily
determined from the quadratic factor of equation (D14). With the roots
known, the relationship between the arbitrary constants (B D- and E;
can be obtained from equations (D21), (D23) and (D24). Equatlons (DBﬂ
with Bl, Bg, and B6 defined by (D35), then give the displacements uz(z),
vp(z), and vg(z) . Equations (D38) and (D40) give the absolute shearing
stiffness and the relative shearing stiffness respectively, and equations
(D41) through (D45) give the stresses.

NUMERICAL RESULTS AND DISCUSSION

The foregoing analysis was used to determine numerical results on
shear stiffness, stresses and deformations for selected cross-sectional
geometries and end-attachment conditions. Poisson's ratio v was taken
as 0.3, G was taken as E/[2(1 + v)] , and no distinction was made
between E and E' , or G and G' . In order to keep the number of
computations within reasonable bounds, the numerical studies were limited
to the case of the so-called symmetrical corrugation, that is the case in
which the trough and the crest plate elements have equal width (2e = f).

The numerical results were obtained by means of the equations discussed
in the previous section. For determining the non-zero roots of the charac-
teristic equation (B20), subroutine P@LRT of the IBM 360 Scientific
Subroutine Package was employed. This subroutine can handle complex as
well as real roots. The characteristic length ¢ was taken equal to the
pitch p .
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For the sake of maximum generality the .stiffness, stresses, and
deformations are represented by dimensionless parameters, 'For a given
basic shape of cross-sectional centerline — i.e., for given values of
h/p, e/p and f£/p, there are two additional dimensionless parameters needed
to define completely the geometry of the corrugation (except for its
absolute size). The most obvious choices for these parameters are b/p
(semi~length divided by pitch) and t/p (thickness divided by pitch). It
was found, however, that the use of (b/p)-(t/p)3/2 is preferable to
b/p alone as the choice for the first parameter; for then the dimensionless
stiffness, stresses and deformations turn out to be relatively insensitive
to the second parameter, t/p . A similar result was observed in the case
of trough lines held straight (ref. 1), but in that case bt/p2 was the
significant parameter corresponding to (b/p) (t/p)3/2 of the present case.

Shear stiffness. - Figures 7 through 9 give the basic numerical results
for shear stiffness. The results are given in terms of the relative shear
stiffness parameter & , defined as the ratio of the absolute shear stiffness
F/2u0 of the actual corrugation to that of an identical corrugation with
continuous end attachment producing a state of uniform shear (eq. (27)).

To convert the relative shear stiffness Q to the absolute shear stiffness
F/2ug , it is only necessary to multiply Q by 2 Gtb/p' , in accordance
with equations (28) and (27). That is

23 . St =2 Gtb —2 1)
0 P etk+5f

In these figures f is given as a function of (b/p)-(t/p)3/2

for the following range of cross-sectional geometries:

h/p = .1, .2, .3, .4, .5
f/p(=2e/p) = .1, .2, .3, .5
t/p = .005 and ,015

Figure 7 is for the case of point attachments at the ends of the
trough lines only (fig. 2(a)), figure 8 for the case of point attachments
at the ends of both the crest lines and the trough lines (fig. 2(b)), and
figure 9 for the case of wide attachments at the ends of the trough lines
only (fig. 2(d)).

Figures 10, 11 and 12 present the same kind of information as figure
7, 8 and 9 respectively, but use log-log scales rather than semi-log
scales in order to show more clearly the relationship between & and
(b/p)-(t/p)3/2 in the regions of very low Q (close to zero) and very
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high £ (close to unity). 1In figures 10, 11 and 12 the curves generally
have a kink at Q@ = .5 . To the left of the kink each curve gives Q as
a function of (b/p)-(t/p)3/2 ;3 to the right of the kink it gives 1 - Q
as a function of (b/p)(t/p)3/2.

The range of geometrical parameters covered in figures 10, 11 and 12
is as follows:

h/p = .2 and .4
f/p(= 2e/p) = .1, .2, .3, .5
for t/p = .005 and .015 ; and
h/p = .2 and .4
f/p(= 2e/p) = .2, .3, .5
for t/p = .050 .
The curves for t/p = .005 and .0l5 duplicate the information given
in parts (b) and (d) of figures 7, 8 and 9. However the curves for
t/p = .050 give information which is not contained in figures 7, 8 and 9.

The closeness of the solid and non-solid curves in figures 7 through
12 shows that § 1is virtually a function of (b/p)-(t/1:>)3/2 alone, i.e.
relatively insensitive to t/p , except in the region of very low
(perhaps impractically low) values of (b/p)-(t/p)3/2

Comparison of figures 7 and 8 (or 10 and 11) shows that a significant
increase of shear stiffness results from having point attachments at the
ends of the crest lines in addition to point attachments at the ends of
the trough lines. (In the case of trough lines held straight (ref. 1) the
increase of stiffness due to the additional set of attachments was much
less significant.)

Comparison of figures 7 and 9 (or 10 and 12) shows that a much larger
increase of shear stiffness is obtained by changing from point attachments
to wide attachments at the ends of the trough lines. This increase is
also an upper limit to the increase that can be expected as a result
of one~-sided interference, like that shown in figure 3 of reference 5
(also reproduced as figure 5 of ref. 1), between the troughs and the end
member to which they are attached.

As is to be expected, figures 7 to 12 show that, all other things
remaining constant, an increase of h or f will lead to a reduction of
the relative shear stiffness Q . Since increasing h or £ dimplies
increase of the developed width p' , equation (41) shows that the
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absolute shear stiffness F/2uj will experience an even greater percentage
reduction than the relative shear stiffmess Q .

It is of interest to compare the shear stiffness obtained in the
present case with that obtained in the case of trough lines held straight
(ref. 1). Figure 13, 14 and 15 present such a comparison for a particular
shape of cross-sectional centerline (h/p = £/p = 2e/p = .2) and two
values of thickness parameter: t/p = .005 and .020. 1In these figures &
is plotted as a function of the length-to-pitch ratio (2b/p). The dashed
curves are for the case of trough lines held straight, the solid curves
for trough lines permitted to curve. It is seen that the shear stiffness
in the latter case is appreciably lower than in the former, except for the
very short and very long corrugations (i.e. very small or very large values
of 2b/p) and for the case of wide attachments at the ends of the trough
lines (fig. 15). The lowering of the stiffness due to allowing the trough
lines to curve is more pronounced for the thinner corrugation (t/p = .005)
than for the thicker one (t/p = .020).

The above-discussed differences in Q , between the case of trough
lines held straight and trough lines permitted to curve, suggest that
analyses which make the simplifying assumption that the trough lines
(along with all other generators) remain straight* (e.g., refs. 6, 7
and 2), may be appreciably in error for some ranges of geometries if the
plate does not actually have some external constraint which forces the
trough lines to remain straight.

Displacement and stress patterns for a particular geometry. - The
manner in which the displacements and stresses vary along the length of
the corrugation for one particular geometry is shown in figures 16, 17
and 18, one figure for each of the three end-attachment conditions considered
in the present analysis. The geometry is defined by the following numerical
values:

h/p = .4
f/p = 2e/p = .4
t/p = .015

(b/p) (t/p)3/2 = .02

These imply a length-to-pitch ratio, 2b/p , of approximately 21.8 and a
6 value of 76°. Those quantities selected for plotting in figures 16,

*The assumption of straightness of the generators is usually present
implicitly as a by-product of the assumption of inextensional deformation
of the middle surface.
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i

17 and 18 are dimensionless measures of the longitudinal displacements

uj and up; the displacements v, v] and v in the plane of the cross
section; the middle-surface shear stresses T1gj, 132 and 123; the extreme-
fiber torsional shear stresses 7T();, 12 and 153 ; the longitudinal normal
stresses c(;> and c(;) at stations and ; and the trahsverse
extreme-fibe¥ stresse a and ¢ @ at statiomns and @ due to frame-
like bending of the cross sections.

These figures show a number of things, the main one being that
stresses and deformations are far from uniform along the length of the
corrugation — i.e., "end effects'due to the discrete nature of the end
attachments can penetrate an appreciable distance in toward the central
portion of the corrugation. These figures also indicate that the major
stresses are likely to be bending stresses associated with frame bending
of the end cross sections. The peaking of the 101 shear stress near
the end, to a value much higher than its average value, indicates that
local buckling of the trough plate element due to shear near the end of
the corrugation may need to be considered in the proportioning of the
corrugation. The longitudinal normal stresses o and ¢ , though
smaller than the maximum normal stress due to flexuire of th€&€ cross
section, are much larger than the longitudinal stresses obtained in the
case of trough lines held straight (ref. 1), and they therefore show that
the assumption of inextensible generators would be less valid in the
present case than it would be in the case of reference 1. Due to the

longitudinal normal stresses 0@= 0, o ’ c@, c@ = - c@, 0@ =

- o@ , and c@ = 0 at junctions @ through @ , the crest and trough

plate elements are in a state of bending in their own planes and the inclined

plate elements may be in a state of combined compression and bending in
their own planes. Figures 16, 17 and 18 show that these stresses reach
peak values near (but not at) the ends. Local buckling due to them may
also be a factor requiring consideration in the design of the corrugation.
The graphs of vg, vy and vy show that the displacements in the plane of
the cross section are an order of magnitude larger than the longitudinal

displacements, and the nonlinearity of these graphs contradicts the frequently

used simplifying assumption that the generators of the corrugation remain
straight lines.

Figure 17 provides a partial check on the correctness of the analysis
and calculations. With f = 2e and point attachments at the ends of both
the crest lines and the trough lines, an additional element of symmetry is
introduced which, on physical grounds, should lead to the following
characteristics for the stresses and displacements:

©
®
®
®
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(The conditions Tiz = 0 and vjcos® + vy = 0 express the fact that the
inclined plate elements, of width k , undergo zero rotation at every
cross section.) Examination of figure 17 shows that all of these charac-
teristics except the first (t1g; = 193) are satisfied very well by the
numerical results. The curves of T3 and Tp3 , which should coincide,
differ in ordinate by a few percent in the region z/b = .4 to 1.0 .

This discrepancy may be due to round-off errors in the rathex lengthy
calculation of T,3 .

Maximum stresses. — Figures 16, 17 and 18 and similar results (not
shown) for other geometries provided an indication of what kinds of
stresses are significant and where their maximums occur. These maximums
were then computed for a much larger range of geometiies, and the results
are presented in figures 19, 20 and 21, one figure for each of the three
kinds of end conditions. These results were obtained for the case t/p =
.015 ; however the dimensionless parameters used as ordinate and abscissa
in each graph were so selected as to make the curves virtually independent
of t/p . Figures 19, 20 and 21 may therefore be used for values of t/p
other than .015.

The range of geometries covered in figures 19 and 20 (point attachments
at the ends of the trough lines only or at the ends of both the trough
lines and the crest lines) is as follows:

h/p = .1, .3, .5

f/fp = .1, .2, .3, .5

(b/p)(t/p)3/2 = .00035 to 2.5

Figure 21 (wide attachments at the ends of the trough lines) covers the
same range plus h/p = .2 .

The stress maximums selected for plotting in figures 19 and 20 are
the end values (at z = b) of tbe following stresses: (I) the extreme-
fiber frame bending stress 0(:) , (I1) the middle-surface shear stress

01 and (III) the magnitude of the maximuT resultant extreme—-fiber shear
stress in plate element 01, i.e. |to1] + |797] -

For the case of wide attachments at the ends of the trough lines,
the frame bending stress o \ was found to be generally larger than

c(i) , and figure 21 therefore gives the end value of c(i> rather than
o . Similarly, |T12| + |Ti2| can be larger than |Tol| + |161| ;
figure 21 therefore gives the former sum instead of the latter. Because
there was found to be very little twisting of plate element 01 in the
case of wide attachments, the latter sum essentially equals |101| alone.
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An extensive survey of the peak values of the longitudinal normal.
stresses O and ¢ would have required much more calculation than
the other maXimum str&sses, because the values of z/b at which the
peak longitudinal stresses occur cannot be specified in advance. Therefore
no graphical data are presented for them. The isolated numerical results
in table 4 may, however, be of some interest. Table 4 gives, for selected
geometries and end conditioms, -the peak values of the dimensionless
longitudinal normal stress parameters and the location (z/b) of these
peak values.

COMPARISON WITH EXPERIMENT AND WITH ROTHWELL'S THEORY

Rothwell in reference 2 cites some experimental data on shear stiffness
of trapezoidally corrugated plates given by Horsfall in reference 8. The
following test-specimen dimensions are given by Rothwell: h = .373"

p = 3.55", 2e = £ = .,75", 6 = 200, length = 2b = 18". The attachments
consisted of 1l/4-inch diameter bolts at the ends of both the trough lines
and the crest lines.

The results of the experiments, as given by Rothwell, are represented
by the circles in figure 22. The lower curve in figure 22 is the theoretical
prediction of the present theory, assuming point attachments at the ends of
both the crest lines and the trough lines and assuming an isotropic material
with Poisson's ratio of 0.3. The upper curve is the theoretical prediction
given by Rothwell, based on his theory, which assumes inextensional
deformation for the middle surface (thereby implying that the generators
remain straight lines) but makes an approximate correction for the shear
strain of the middle surface.

As is to be expected, the present theory, with its more degrees of
freedom, predicts lower shear stiffnesses than Rothwell's, but it also
predicts lower shear stiffnesses than those obtained experimentally. This
may be due to the finite width of the bolt heads used in the end attachments
or perhaps to interference between the deformation of the crest and trough
plate elements and the member to which the attachment is made. There is
not enough detail in reference 2 about the experiment to permit a more
definite assessment of the cause of the discrepancy, and the original
source, reference 8, is not available at the time of this writing.

CONCLUDING REMARKS

A theoretical analysis (based on the method of minimum potential
energy) and numerical results have been presented for the elastic shearing
of a trapezoidally corrugated plate with discontinuous attachments at the
ends of the corrugations. The present work is an extension of previous
work (ref. 1) in which the same problem was considered but with the trough
lines assumed to be held straight. Thus the present work is more
nearly applicable to a corrugated plate by itself, while the previous
work was more pertinent to a corrugated plate fastened to a flat plate.
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TABLE 4. - PEAK VALUES OF o(Z)p/Euo AND G(:)p/EUO

End h_f_2 2[5.]3/2 t | 2 MOk ‘@P 2
Condition |Pp p p | P'P P P ug “Eug b

.005| 11,3 0.8317 -0.3166 0.83

.002 .015{ 2.18 0.4458 -0.1640 0.65

2 .050 | 358 0.0400 -0.0087 0.55

.0051 113 3.9844 -1.5150 0.99

.02 .015] 21.8 2.1597 -0.7854 0.96

Fig. 2(a) .050 | 3.58 0.8962 | -0,2957 |0.88

.005] 11.3 0.1680 =0.0565 0.65

.002 .015] 2.18 0.0175 -0.0056 0.60

4 .050 | .358 0.00086 -0.00019 0.60

.0051 113 1.3673 -0.4595 0.96

.02 .015] 21.8 0.7722 -0.2583 0.88

.050 | 3.58 0.3740 -0.1234 0.65

.005] 11.3 0.7942 -0.7879 0.88

.002 .015] 2.18 0.4288 -0.4179 0.65

P .050 | .358 0.0347 -0.0327 | 0.60

.005 | 113 3.1623 -3.1381 0.99

.02 .015} 21.8 1.6835 -1.6466 0.96

Fig. 2(b) .050 | 3.58 0.6462 -0.6122 0.88

.005} 11.3 0.1661 -0.1659 0.65

.002 .015}2.18 0.0174 -0.1736 0.60

4 .050 | .358 0.00085 -0.00085 0.60

.005 ) 113 1.2289 -1.2280 0.96

.02 .015] 21.8 0.6955 -0.6941 0.88

.050 | 3.58 0.3398 -0.3375 0.65

.005 ] 11.3 0.2158 0.8906 0.88

.002 .01512.18 0.1049 0.4532 0.65

P .050 | 3.58 0.0138 0.0349 0.60

.005 | 113 0.2720 0.1120 0.99

.02 .015121.8 0.1368 0.5781 0.97

Fig. 2(d) .050 | 3.58 0.0508 0.2051 0.88

.005 111.3 0.1502 0.2258 0.65

.002 .015]12.18 0.0165 0,0248 0.60

4 .050 | .358 0.0008 0.0012 0.60

.005 | 113 0.7261 1.0910 0.96

.02 .015 | 21.8 0.4066 0.6127 0.88

050 | 3,58 0.1916 0.2914 0.65
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Three different kinds of end-attachment conditions have been assumed
in the present work, as in reference 1: (a) Point attachments at the ends
of the trough lines only, (b) point attachments at the ends of the trough
lines and the crest lines; and (c) wide attachments at the ends of the
trough lines only, the width of the attachment being the full width of the
plate element at the trough.

Based on the analysis, numerical results have been presented for the
effective shearing stiffness and certain maximum stresses for a wide range
of geometries. A knowledge of these quantities is felt to be of importance
in the design and stress analysis of trapezoidally corrugated plates
intended as shear webs.

The numerical results confirm the by now well known fact that the
absence of continuous attachment at the ends of the corrugations can
cause a marked lowering of the effective shear stiffness, even for
corrugation lengths many times larger than the pitch. This lowering of the
shear stiffness results from the large frame~like flexural deformations of
the cross sections permitted by the discontinuous end attachment. Of the
three kinds of end conditions considered, point attachments at the ends of
the trough lines gave the lowest shear stiffness, as was to be expected.
A moderate increase in stiffpness was obtained for the case of point
attachments at the ends of the crest lines and the trough lines, but a
very marked increase was obtained by having wide attachments at the ends
of the trough lines only. The case of wide attachments represents an
upper limit to the constraint provided by point attachments at the ends of
the trough lines plus one-sided interference between the troughs and the
member to which the troughs are attached.

Because of the discreteness of the end attachments, the stresses can
be quite non-uniform along the length of the corrugation. In particular,
the middle-surface shear stress in the trough plate element was observed
to peak significantly at the ends of the corrugation. The most significant
stress, from the point of view of magnitude, was found to be an extreme-
fiber bending stress associated with the flexural deformation of the end
cross section. However, data have also been presented for the maximum
middle-surface shear stress and the maximum extreme-fiber shear stress
(combination of middle-surface and torsional shear stress). A limited
amount of numerical data (table 4) was presented on the maximum longitudinal
normal stresses. The longitudinal normal stresses vanish at the ends but
in the interior reach peak values which may exceed the maximum shear stress.

For a given basic shape of cross-sectional centerline, two additiomnal
dimensionless parameters are required to completely define the geometry of
the corrugations to within a scale factor, e.g. a thickness parameter t/p
and a length parameter 2b/p . The numerical work revealed, however, that
if a certain combination of length and thickness were used as one of the
parameters, then the dimensionless shear stiffness and dimensionless
stresses would be virtually independent of the second parameter. The
combination parameter that serves this purpose was found to be (b/p)(t/p)3/2.
(Thezanalogous parameter when trough lines are held straight (ref. 1) was
bt/ps .)
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Except' for the very small or very large length-to-pitch ratios and
except for the case of wide attachments a significant difference in shear
stiffness was found to exist between the case of trough lines held straight
(ref. 1) and the present case of trough lines which are permitted to cu.ve.
This suggests that the assumption frequently made (or implied) in the
shearing analysis of corrugated plates, that the generators remain straight
lines. may be questionatle in some cases and for some range of geometries.

In reference 1, it was found that the analytical results taking into
account the torsional stiffness of the plate elements making up the corrugation
were unly very slightly different from those obtained neglecting the torsional
gstiffness. Calculations, the results of which .have not been presented, show
tnat the same phenomenon is true in the present case, thus tending to justify
the simplified manner in which the torsional strain energy was included in
the total potential energy expression — i.,e. by the use of an average rate
of twist across the width of each plate element rather than the detailed
pointwise rate of twist.

Inasmuch as .the present analysis is based on the method of minimum
potential energy, one. could claim that it over estimates the shear stiffness
were it not for the approximate treatment of the torsional strain energy
and the assumed absence of interaction between the frame bending moments
and the longitudinal curvatures. Because of these simplifications one can
only claim that the shear stiffness is probably over-estimated.

It would appear that worth-while avenues of future analytical work on
the shearing of corrugated plates should include the extension of the
present approach to (a) the case of one-sided interference between the
corrugation ends and the member to which the ends are attached and (b) the
case of curvilinear (e.g., circular arc) corrugation. The shearing of
the circular-arc corrugation has been studied by McKenzie (ref. 6), but on
the basis of the assumption that the generators remain straight and
inextensible. As already noted, such an assumption may not be appropriate
in all cases.
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APPENDIX A

VARIATION OF THE TPE

Equation (16) in expanded form is

2

b du du_, du du
- 1 _1_2 _2
e = f bll[dz ] thow: o a@ f b22(dz ] dz
-b.
+b ( 2+ 2+ u2+2c + 2 u,u,)d
o oo%o T 111 T ©22%2 01%"1 T “C12%1Y279%
b dv dv dv dv
0 0 0 1
* j_b (doo“o @z T T Tl Em T
+ d_..u ilZi-+ d..,u Ez% d
21Y2 dz 22%2 4z 2
b dv 2 dv 2 dv 2
+ e -9 + e L + e 2
_ | ool az 11|dz 22| dz
d a
' 20 dvl dv0 ' 20 dv2 VO + 2 vl dv2 &
10 dz dz 20 dz dz 12 dz dz
b 2 2
+ I_b (allvl + 2a12v1v2 + a,,v, )dz - 2 F u, (Al)
where
= * = * \
eoo = eoo elo. = elO
= * . = *
;1 = e ten €20 = €20 > (a2)
= * a = * -
52 e%2 T €y €12 = et ey
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The first variation of the TPE due to the
suy (z), Sup(z), Svg(z), 8vi(z), 6vo(z) in the
cees vz(z) is

small variations 6y,
displacements ug, uy(z),

d
ScrpEy = 2 b o du1 d(Gul) .t du1 (Guz) N dgzld(ﬁul)
' -b 11 dz dz 12} dz dz T dz dz
du, d(8u,)
2 2
tbho % @ 0
b
+.2 J—b [coouOGuO + cllulﬁu1 + c22u26u2 + c01(u06u1 + ulduo)
+ clz(uléu2 + u26ul)]dz
d(s d d(é
(%000 Taz iz °Y 100 "1 Taz dz U1
- d(é d 7] [~ d(s d
+ d u ( Vo) + _ZQ Su + d u ¢ vl) + —Zl-éu
20] "2 dz dz 2 11 1 dz dz 1
- L
B d(6v1) dvl 7] ~ d(6v2) dv2
tdl T ta wlt dzzL"z izt az Suylpdz
‘s b . dvO d(6v0) ‘e dvl d(§vl) ‘e de d(6v2)
-b 00 dz dz 11 d=z dz 22 dz dz
.. dv1 d(6v0) N dv0 d(le) ' e dv2 d(GvO) N dv0 d(6v2)
10} dz dz dz dz 20t dz dz dz  dz
[ d d d
‘e vy (sz) .\ v, d(GVl) s
12| dz dz dz dz

b
2 J_b allvltsv1 + a12

40

(v16v2 + v26v1) + a

2F«6u

v 6v2]dz - 0

22°2

(A3)



i

Where the derivative of a variation appears in the integrand of
equation (A3), integration by parts will transform such a term so that
the integrand involves the variation itself, rather than the derivative
of the variation, and will also introduce boundary terms. Using the
first term as an example,

(b g&l.ff;gll dz = gzl Gul - Jb ’ Zl Guldz
J-p 9% z z , b dz

Reducing all integrands in this fashion wherever possible, and utilizing
the boundary condition

V() = 0 , Gvo(tb) = 0 (A%)

which applies to all three types of end conditions shown in figure 2,
one obtains

b
F
6 = » - —
(TPE) (6uo) [_b (2coou0 + ZCOlul b)dz
b d2u1 d2u2
+2 f BTl PR I b IR P B P
b dz dz
dv dv
0,1 1
+540% T2 W@ )(Gul)dz
2
b d ul d u2 1 dvo
+2 J P12 T2 TP T2 Tl T e Tz 9 @
-b dz dz
dv dv
1 1.1 2
t3d 3 T7%23 ) (8u,)dz
b du du a%y a2y a2y
-2 J (1 1 1 d 2 + e 0 + e 1 + e
ol2 10d T2 %0 %@ 00 2 10 2 20 |2
b d du a?
+ 2 + a - i—d —El-—-l d —2_ e 0
211V, 12V2 7 7 91 &z 2 921 dz 10, 2
-~b dz
d2v1 dzvz}
- e - e, —5 | (8v,)dz
112 12 2 1

(equation continued on next page)
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b du a“v d“v
+ 2 J [ v. +.a,,v -3 d,, =2 e 0 -e, ., — 1
-b

312V1 ¥ 392 " 2% F T %0 72 T 12 3
dz dz
d*v, [ au du, b
- epp T |(6vp)dE +-2{ by FT By T [GBup|]
dz | -b
du1 duz\ b dv0
T2 [blz @ tPa2E ||| Y|ttt t 0w
dv1 dvz- b dv0
tln g TPng [V |fent P w
dv1 dv2 b
+2e), =+ 2e,, 3 |(6v,) " (45)

Equation (AS5) is valid as it stands for the case in which there are
point attachments at the ends of the trough lines only (fig. 2(a)). 1If
the attachment is one of the other two types shown in figure 2, equation
(A5) must be modified to take into account the implied constraints on
6vy and évy at z = b .,

Thus, 1f there are wide attachments at the ends of the trough lines
(fig. 2(d)), it follows that

(le) = 0 (A6)

and the next-to-the last term in equation (A5) must therefore be omitted.
If there are point attachments at the ends of the crest lines as well as

the trough lines (fig. 2(b)), the resulting constraint against horizontal
displacement of the crest attachment point is expressible as

[(vlsine)cose + v,siné

2 = Volpesp = O (47)

Taking into account equation (A4) and considering that sin6 # 0 , this
becomes

(vlcose + v2)z=tb = 0 (A8)

or, in variational form,

(lecose + 6v2) = 0 (A9)
z=*b
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Thus, for the type of end attachment shown in figure 2(b), d&vp 1in the
last term of equation (A5) should be replaced by =-6vicos8 . The last
two terms of equation (A5) can then be combined, leading to the following
form of the equation for &(TPE):

b b
S§(TPE) = (Guo)'J (...)dz + 2 J (...)(Gul)dz
-b -
b b
+ 2 I (...)(Guz)dz -2 J (...)(Gvo)dz
b b
b b
+ 2 J (...)(le)dz + 2 J (...)(sz)dz
b -b
du b
*2 [b11 PP LIPS G N
l du2 7 b
+2 b12 3z TP az ](‘5“ )
L J'-b
dvo dv1 dv
+ (ldyuy +dyqu, +2e T+ 20 Tt 20, &
de dv1 dv2 b
[d22u2 + 2e20 o T 2e12 Fra 2e YT ]cose](ﬁv )}
-b
(A10)

in which the symbol (...) has been used to represent terms that are
identical to the corresponding terms in expression (A5).

Differential equations. - In order for the TPE to be a minimum,
§(TPE) must vanish for all possible values of Sug  Suq, Suy, &vg, vy,
8vy consistent with the constraints. Thus the coefficients of the latter
five quantities in the various integrands of equation (A5) must individually
vanish, as well as the entire integral coefficient of d&upg . This leads to
the following system of one integral equation and five differential
equations, which apply regardless of the type of end attachment:

b
4c00u b+ 2c01 J_b u,dz - 2F 0 (A1)

0
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au a?u dv dv
1 2 1 0,1 1.
b1 2 by ) tegtotennti e tad: T
dzul d2u2 L av, av, dv,
“biy T T by T ot eyt et Ty tdna trdng 0
dz dz
2 2 2
14 Egl-+ 1q EE& + e ’ 0 + e ‘ 1 +e ’ 2 . 0
7% 03 Y2%0 3= 00 2 10 732 20 2
dz dz dz
du du d2v d2v d2v
a..v. ¥+ a v, - l-d _1_ l-d ——2-— e 0 _ e 1 - e 2 _ 0
1t Tt wm 74 10 T2 11 2 12 3
dz dz dz
du d2v d2v d2v
a . .v, +a..v, - l-d —2_ e 0 - e 1 - e 2 = 0
12V1 ¥ 222% 39 3 20 2 12 3 22 3
dz dz dz

P (412)

Boundary conditions. - The vanishing of &(TPE) also requires that
the boundary terms of the &§(TPE) expression vanish identically for all
variations in vj3, vy, uj and up at z = tb consistent with the
constraints. Referring to equation (A5), which applies to the case of
point attachments at the ends of the trough lines only, it is seen that
this requirement leads to the following boundary conditions:

\
11 dz 12 dz
. dul . du2 -0
12 dz 22 dz
> (Al13)
dv0 dv dv2
— — —_— =
dja®p *dgruy t 2803 Y28 3 Y 2o, 3 0
dv dv1 dv2
dygUy ¥ 2890 % Y283 T2 3 0 J
at z = 1b . Inasmuch as bjjboo - biz does not vanish, the first two

of these equations may be replaced by

(Al4)
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at z =.2b . Thus, the complete set of boundary conditions corresponding

to the case of point attachments at the ends of the trough lines only
(fig. 2(a)) consists of equations (A13), (Al4) and

vo(tb) = 0 (A15)

which is the first of equations (A4).

For the case of wide attachments at the ends of the trough lines
(fig. 2(d)), expression (A5) applies but with.the next-to-the-last term
excluded. As a result, the first of equations (Al3) is non-existent,
and the condition

vl(tb) = 0 (Al6)

is used in its stead. Otherwise the boundary conditions are the same as
for the previous case.

For the third case, in which there are point attachments at the
ends of the crest lines as well as the trough lines (fig. 2(b)), equation
(A8) constitutes one of the boundary conditions, and equation (Al5) a
second. The remaining three boundary conditions, implied by the wvanishing
of the boundary terms of expression (Al0), are equations (Al4) and the
following:

dv dv dv2
digy Fdgguy Y2003 Y283 Y2 T
dv0 dv1 dv2
- [d22u2 + 2620 d—z— + 2612 a‘z—' + 2622 a—z—-)cose = 0 (Al17)

at z = *b .

Equations (Al4) in conjunction with the fact that dugp/dz = 0 , are
readily interpreted to mean that the longitudinal normal stress acting at
the corrugation ends vanishes.

Following the procedure of appendix B of reference 1, equations (Al3)

and (Al7) can be shown to be equivalent to the requirement that certain
effective in-plane shears at the ends of the plate elements vanish.
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APPENDIX B

SOLUTION OF THE EOUATIONS FOR BASIC UNKNOWNS

Equations (17) and (18) are the field equations of the physical
problem. In this appendix equations (17) will be solved for uj(z),
uz(z), vog(z), v1(z) and va2(z) in terms of uQ , subject to boundary
conditions of equations (19), (20) and (21); or equations (19), (20).
(22) and the second of equations (21); or equations (23), (24), (25)
and (26). Then the relationship between the shearing force F and
the total relative shearing displacement 2up of one side of the
corrugation with respect to the other can be obtained from equation
(18). Physical arguments can be used to show that uj and uz should
be even functions of 2z and vg, vy and v odd functions of =z . The
subsequent work will be simplified by considering only that solution
of equations (17) which satisfies these conditions.

Particular integral. -~ A particular integral of equations (17)
will be sought in the following form, consistent with the even-ness
of uj; and up and the oddness of wvg, v], Vg ¢

u; = constant , up = constant , vg5 = 0 , vi=0 , vp=0

For this form of particular integral the last three of equations (17)
are identically satisfied while the first two reduce to

€191t Co¥ T T C51%
€1pup teppuy = 0
whence
\
YT Y%
S (B1)
Uy T LYy
with J
-C [od )
- 01522
&y < . .2
€11%22 12
S (B2)
- €01%12
2 ) C C - C2
1122 ~ C12
J
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Thus a particular solution of equations (17) is

u = r.u

1 170
Y2 T RaY%
Vo = 0 (B3)
v, = 0
v, = 0
Characteristic equation for complementary solutions. - The complete

solution of equations (17) comsists of two parts: (i) the particular
integral, equations (B3), and (ii) the complementary solutions, i.e. all
the linearly independent solutions of the homogeneous system obtained by
setting wug equal to zero . Solutions of this homogeneous system will
first be sought in the following form:

ul = Aerz
u, = Be'?
v, = cet? (B4)
v2 = Derz
v0 = Eerz

Substituting these assumptions in equations (17) with ug set equal to
zero leads to the following restrictions on A, B, C, D, E and r

bllrz_cll b12r2'°12 B % digr 0 - % diotf |2 0
P1af ~C12 bzzrz’ 22~ % dpy™ - % dyor - % do07] |B 0
- % dyif - % dyyF all—ellrz a12_e12r2 - elo”2 cl={0}| @&
0 - % dyot *’12"‘*12r2 3y97€p0% T ezor2 D 0
- % dio* - % dpoft - e10r2 - e20r2 - eoo”2 1] _Od



Thus, for non-~trival solutions of the form of equations (B4), r must
satisfy the following characteristic equation:
2 2 1 1
byyF e1 PpoF ey T 7yt 0 =3 4407
1 1 1
biati=eyy  Bpp¥ "Gy  ~ 3 4yt =2 gt =% 9y
1 1 o L2 I 2 |
-7 9t 53 41T appTeT 197€12" ST L Bl
0 - ;-d r a, —e r2' a,,—e r2 e r2
2 22 12 712 22 722 20
1 1l 2 2 2
| T 2 A R ' €20 ~ €00t
(B6)

Expanding the determinant by cofactors based upon the fifth column,
multiplying through by -32 for convenience, and introducing the short-
hand notation

\
. ) . ) )
8 = 211899 T 31p 8 = 2a;581, ~ 2778y, ~ 259654
b =b.. b, - b hza.d.-a.d
= by1Pos = Py = a55dyy T 35451
c = C 4Chpn — c2 j = a,.,d,, - a,,d » (B7)
= 1102 12 J =2811%2 12921
; s e,.e - e2 ﬂ =d..,e - d..e
Fej189 T 19 = dy899 ~ 99285
£ 2 2bj,015 = by3Chy ~ byytyy m=d,je, " dyey )
A ~ N
dy = byrdyp = b1adyp dg = haj by, - dyqdy, *heyoeqy
. . o
dy = eyd50 = 92999 d; = dayyby, + 4cyye,y — dyy
dy = Bejaen = 2dy0dy,  dg = 3y5855 7 8198 > (B8)
ds = c1390 = 22910 dg = 2d,5dy; = 2dy,d,5 = Beyyeqy
ds = €1980 ~ ©10%22
48 ~ s



ny = byydiy = byydyg ng = 2d,45dyq - 8cp,e,
. - (B9)
n, = ¢13d50 ~ 1290 n, = 295895 7 31280
P; = ©11%0 " ©10°12 P5 = hajoby, *ohegseq, - dygdyy
Py = 4ajpby, ey —dyy Pg = byydig = Py1dyp
. . (810)
Py Bhaj by, +bejaeq; = dgdy, Py E edyg = Chadig
P, = 4ajgby, +hcyyer, —dyndyy Py E 255819 T 3918
4y = Zbyocyy = bygChy T by 43 = byydyy = byodyy
. ~ (B11)
4y = dyz890 = 920%92 4, = 49210 ~ 950812
one converts equation (B6) to
2 4 6 8, 2
K -
(ko + 5T + k4r + k6r + k8r )r 0 (B12)

where

ky = 2eg9hg F dygrg = doprag

k, = Z2eggr, + djgrg = dyphgy T 2e50h17 T 28500

k4 = 2e00)\3 + le}‘7 - dZO)‘ll - 2e20Xl6 + 2e10)\20 (B13)

ke = 2Zegpry +dighe = dogrig T 2850215 t 283079

kg = 2e455); = 2ey004 T 2e95M18
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with

10

11

12

13

16be
l6(bg + ef) + 4k(b11 21 2b12d11) 4b11d22m
+ 4b,d2 e
2291122
f (B14)
16(ab + ce + fg) + 4b ( 21 22j) + 4cll(d22m dzlk)
+8d,, (ci.k - b, h) + a2 (a2, - 4a he, e, )
11712 12 11722 22 22 22722
S " A 2
l16(af + cg) + 4h(2c12d11 11 21) + 4(clld223 + a22C22d11)
“n J/
lé6ac
\
8ed + 8b12( 10 ezom) + 8b22dlld5
Sgdl + 6ed + 8b12(e10h OJ) + md3 + kdg + zdll(elod7 - e20d6)> (B15)
8ad + 8gd4 + Jd3 + hd9 8d llc22d8
Bad2 )
\
8en1 + 8bll(elok - e20m) + 8b12d11d5
8en2 + 8gnl + 8b11(e10h e20j) + kn3 + 8clle20m
+ 8d11b12“4 + 8dy1e10(800810 T ©12%20) L(Ble)
o - P 2
8an1 + 8gn2 + 8c11e203 + hn3 8c12d11n4 + 2a22d11d20
8an2
S
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14

15

16

17

18

19

20

21

16bp,
bmpg + 16(by,cpp = C11byy)P) = 4by1e,0P,
+ 4b ye,0py = hdyje)pdy + 4y e (yodyy = byydy)
+ 4 1o(b1194 - blzgs)
- \ (B17)
4mn, + 4ipg + 4e2o(°11£’2 - °12;3) + 16(bjyc15 ~ P11%92)Pg
+ (dydyg - 4c11e10)1;4 + (bejpeq0 ~ 4 2o)p5
+ 4dy1e,0(C1d921 T S22%11)
43n, +1&?8+4ﬁ21f7 )
160a, )
16£&8 + 16&5;1 + 4&2;3 b, 22q4
+4bg,d10(dy 805 T dppeyp) T 4byadigdiiey)
A S (B18)
16d5; + 16&8§l + 4(cy,dqy - clld?_l)c;2
+ 4azzdzogl3 + 4eqqd 22q4 + 4b12d10h
+ d10‘111&7 4217011%0%2
16;;4 + 4hd, + bay,d p
y
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From equation (B4) it is evident that the quantity r appearing as
the unknown in the characteristic equation (B12) has the dimension of
(length)’l. For computational purposes one should convert the characteristic
equation to an alternate form in which the unknown is dimensionless. This can
be done by introducing any characteristic length c¢ (e.g., ¢ could be
taken equal to the pitch p ) and defining a dimensionless variable R as
follows:

R = cr (B19)

In terms of B equation (Bl2) becomes

K K K k
(k0+—§R2+—2R4+—gR6+—g—R8)R2 = 0 (B20)
[ C [ o] (o4

The roots of equation (B1l2) will be denoted by m, rs, ..., rig, those
of egnation (B20) by Rj, Ry, ..., Rjpg, and these two sets of roots have
the rollowing relationship, in accordance with equation (B19):

R, = erg G =1,2,...,10) (B19')

The nature of the roots of the characteristic equation. ~ Because
equairion (B20) contains only even powers of R and has R4 as a factor,
the following properties can be postulated for the Ry :

R, = -R Rg = -Rg
(B21a)
R3 = —R2 R7 = —R6
R9 = 0
(B21b)
RlO = 0

Examination of equation (B20) shows that for a given cross-sectional
shape (i.e. fixed values of 6, e/c, k/c, and f/c ) and fixed ratios of
the elastic constants to each other, the Rj are functions of t/c only.

The non-zero roots, Rj through Rg , may be real or complex, and for
most geometries of interest they are generally complex. In that case the
following additional properties may be ascribed to the Ry :

R, = R * R, = R/* (B22)

where R.* denotes the complex conjugate of R

i i”
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Complementary solutions associated with Rl’ RZ’ cena RB‘ = The

values of A, B, C, D, and E 1in equations (B4) associated with the
particular non-zero root r=ry (§ =1, 2, ..., 8) will be denoted by
Ay , By , C4 , Dy , and Ey . Tge relationships existing among these

five coefficients can be obtained by substituting r = rs into equations
(B5) and solving the last four of these equations for the ratios of B, C
Dand E to A . These equations can be written as follows:

. , B ] 6 &« E' % .2
Lp Iy L3 L14-T By/A T %12 T E P12ty
16 *
Li2 Ly L3 Laog Cy /A, 7 E Y11}y
- (B23)
L3 L3 L33 L D, /A, 0
16 %
Lig Loy La, L E /A 7 & %108
B 4L i L ..
where
E' % 2 G *
L B P22Ry T E S22
16 *
Lo = =2 & 1%y
16
Lz = — 3% 928
= 16 *
b4 = ~ 2 Y208y
* (£)2 G **  G'(t)2 =4 |2
Ly a1 [c) e tE [cJ e11] R}
L % (t)2 [ G' (12 — ) > (B24)
23 alZlc) “lE®12 T E [cJ 12| &5
- - _G_ *%k 2
Loy E %10 &
- 2 _[e ** &' 5)2—*
Las aZZ[c) [p e t (c %22 |R}
G * o2
- -G *™p
Las E 20 3
- - g %k 2
Lug E %00 ¥
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with

11

12

3 2 2
(c/e) [ [e) 2 [e] 4
—_—t——— A _ + A .|| cos“® + 4A_ |=] sin'®
1201 - vz)sz 11 22k 33\f

- A, 2 cost + 24

e e 2
11 23 E-§-sin f6cosb - 2A

3 2 2 ;
(c/e)2 5 [622(5] cos® - 4A33{%) sinZ6coso
12(1 - v7)B

l E._ 2 2
-3 A12 = A23 (cos™® - sin“8) + A

o
|

3 2 2
(c/e) (gJ Fz] 2y _ ee
[522 i) Y AAgg(E) cosf - 2y ee

12(1 - v?)g?

1fe k
3&3'+ cJ

1k
6 c

1({, k , £
6[2 c + cJ

oo
+
=lo

=~|n

=0
+
N

|0

d22 = = 2 ginb

2 sin8(1 ~ cos®)

-2(1 - cos8)

2(1 - cose)
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13 % sinze]

e
13 cose:l

r (B25)

.

\

} (B26)

\ (B27)

> (B28)




k% e k 2 lf
eOO P + < cos 0 + 7 o
k% 2 (k 1f 2
ell = sin e[ + 2 cos 6]

*%k 1 k f
elo - 5(2 ry + -E}Sinecose
k% 1f
20 -5 ¢ sind
% 1 f 2
e12 = 3 sin“6coso
PR Y (IS R < sin®
e = 3(e + % ¢°s 0+ 2 s sin eJ
=+ - 1fc £ cos?
e22 = 3(k + 2 2 cos 6]
E* = l(E- -2 < sinze) cosf
12 3tk f

The solution of

From the last four of equations (BS5), it is seen that if
B/A remains unchanged while
From this property and equations (B2la) it follows that

by its negative,
change sign.

? (829)

\ (B30)

equations (B23) will be denoted as follows:

By/Ay F;?
¢, /A, yj
Dj/Aj ) Yj
] L

55

(B31)

r 1s replaced
C/A , D/A and E/A merely



= Ca— Dﬂ-Y E=-
Y, Y, Y=Y Y, 1 Y, = Yy

B _ c_ _ ) = -
Y37 Yy ¥Y3= Y, Y3TTY Y357V

» (B32)

=B =—C D=— = -
Yg = Y5 Yg= Y5 Yg = Vs Yg = ~Yg
B_ B c__C¢C D__D E_ _E
Y=Y Y7 =Yg Y7 = Y Y7 = ~Yg

/

By summing the eight solutions of the form of equations (B4)
corresponding to r = ry through r = rg , expressing each exponential
in terms of hyperbolic functions, discarding those terms not having
the proper even-ness or oddness in 2z , and taking into account
equations (B32), one arrives at the following part of the complementary
solution:

\
. R.z R_z * R_z * R 2z
u, = A1 cosh —E—-+ A3 cosh —Ef-+ A5 cosh —E—-+ A7 cosh e
R,z R,z R.z R z
- * B * 2 * B 5 * B 6
u, = Alyl cosh - + A3Y2 cosh c + ASYS cosh . + A7Y6 cosh P
R.z R,z R_.z R _z
_ Ak C 1 * C 2 * C . 5 * C ., 6
v, = AlYl sinh ‘E?'+ A3Y2 sinh -E—-+ ASYS sinh ‘??'+ A7Y6 siuh — > (B33)
R.z R,z R .z R, 2z
_ .*D 1 * D 2 *D 5 *D . 6
v, = AlYl sinh C + A3Y2 sinh o + ASYS sinh o + A7Y6 sinh =
R.z R,z R_z R_z
- * E 1° * E 2 * E 5 * E |
Vo = AlYl sinh " + A3y2 sinh - + A5y5 sinh —E—-+ A7Y6 sinh — y
* k% *
where Al, A3, A5, A7 are certain linear combinations of the Aj's and

may be regarded as new arbitrary constants.

Complementary solution associated with the root R = Rg = 0. -

Substitution of r = rg = 0 into equations (BS5) gives the following
relations which the coefficients A9, Bg, «e.y Eg must satisfy:
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_-cll =C15 0 0 0 | ;9 | -0-
P ~Cy, 0 0 0 39 0
0 0 aq ay, 0 09 = 0 (B34)
0 0 aj, ay, 0 D9 0
0 0 0 0 0 E9 OJ

Since cjjc9y - c%z and ajjajsy - a%z are not zero, these equations
have the solution

(B35)
E = indeterminate

Substitution of these values, together with r = rg = 0 , into equations
(B4) gives the following complementary solution:

(B36)

where E9 is an arbitrary constant.

This solution gilves v even in 2z rather than odd. The constant
Eg may therefore be equated to zero. Thus the root R = Rg = 0 makes no
constribution to the complementary solutions.

Additional complementary solution not of the form of equations (B4). -
The presence of a repeated root (see eqs. (B21b)) of the characteristic
equation indicates that there exists a complementary solution that is not
of the form of equations (B4). This complementary solution can be found by

inspection if one assumes the following form for it:

U T A0

Uy = Bio

v, = Cloz/c (B37)
v, = Dloz/c

Vg = Eloz/c



where Ajg, Bjgs .-.s Ejg are constants. Equations (B37) satisfy the
symmetry and antisymmetry requirements with respect to z . Substituting
equations (B37) into the original differential equations (17) (with the

ug term omitted) leads to the following conditions on Ajg, Bjg, ..., Ejg @

a d r
10 11
“2¢3; T2¢ T ¢ T 0 A0 0
d d d
20 21 22
“2¢1, 7205, T ¢ -2 - <1120 0
0 0 0 0 0 Eol =0 (838)
0 0 0 aj; a, 1o 0
0 0 0 aj, a,, D, 0
_ - L . .
whence
\
Clo = Pjp = O
E10 = indeterminate
= > (B39)
410 £1E10
Bio = &2Fip
where /

15990 = 22910

El ) 2¢(c, ¢ - c2 )
11522 T 12
(B40)
~ 19990 7 c11%90
E =
2 2¢(c..c.. - c2.)
€L€11%02 12
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Thus the complementary solution of the form of equations (B37) is

1 1810

&%10

Vo = Eloz/c

where Elo is an arbitrary constant.

Complete solution. - The complete solution of the differential
equations (17) (satisfying the symmetry and antisymmetry requirements),
obtained by adding together the particular integral (B3) and the

complementary solutions (B33) and (B4l), is

* R,z % R,z * R .z
ug = cluo + Al cosh ~E—-+ A3 cosh —E—-+ A5 cosh .
A* h Eﬁi + £_E
+ Ay cosh —=—+ £1E 1
R.z R.z R.z
* B 1 * B 2 * B
u, gzuo + AlYl cosh - + A3Y2 cosh — + ASYS cosh c
R 2z
* B 6
+ A7Y6 cosh - + 52E10
A%C sinn Elf-+ A%y sinh R, A%yC sinh &2, A%C
V1 1Yy e 3¥p S ¢ 5Y5 sinh —¢ 776
R,z R,z R.z
* D 1 * D 2 * D 5 * D
v2 Alyl sinh p + Asyz sinh —E—-+ A5y5 sinh - + A7Y6
R.2z R,z R.z
* E 1 * E 2 * E 5
= —_ <+ =2
Yo A;v{ sinh ——+ Ay, sinh — Agyg sinh —
* E Rg2

z
=+ =
+ A7Y6 sinh c E o

10
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sinh

(B41)

;

(B42)



The unknown constants Al, A3, *, A7 and Ejg are determined in
terms of ug through the boundary" condltions, which are: equations (19),
(20) and (21) for the case of point attachments at the ends of the trough
lines only; (23) through(26) in the case of point attachments at the ends
of the trough lines and the crest lines; and (19), (20), (22) and the
second of equations (21) in the casé of wlde attachments at the ends of
the trough lines.

Substitution of the expression for wuj(z) from equations (B42) into
equation (18) gilves

* *

*
A R.b A R.b A R b
oo *+ 015000 * o1 L ston Lt 2L gpnn 24 2 & gy 2
01 uy Ry 05 ¢
*
Ay e R Epp F
+ — R sinh — c +—£ b = Zu (B43)
Y 6 Yo 0

%
With A;/un , etc. determined through the boundary conditions, equation
(B43) yields the effective overall shearing stiffness F/2ug of a single
corrugation.

Special form of solution when Rl through R8 are complex. -~ The

procedure described above is quite general; it applies regardless of
whether the eight non-zero roots of the characteristic equation (B20)
are real or complex. For almost all cross-sectional geometries of
interest, however, the eight non-zero roots of this equation turn out
to be complex. It is therefore worth-while to investigate the special
form taken on by equations (B42) and the boundary condition equations
in that case.

Considering the case of complex roots, and taking into account
equations (B22), one can represent R], Ry, R5 and Rg in the form

X + 1Y

U + iv R

2]
I

(B4
X - iy

)
il

U~ 1iv R

where U, V, X and Y are real numbers. Furthermore, from the last four
equations of (B5) it is evident that if r is replaced by its complex
conjugate then B/A, C/A, D/A and E/A are also changed to their complex
conjugates. Applying this to the complex conjugate pairs rj;, r, and
r5, rg , and taking into account equations (B31l), it follows that

B _ B C _ _C* D _ D% E _ _E*
Y2 Y1 Y2 Y1 Yo = N Y2 Y1
(B45)
B _ B C _ _c* D _ _D* E _ _E*
Ye Y5  Yg s Ye s Y6 s
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Thus the y?’C’D’E
representation?
YB PB + iQB
1
YB pB _ iQB
2
YC p¢ + iQC
1
YC PC _ ch
2
P PP 4+ 4o°
1
vy = 2P -1’
YE PE + iQE
1
v; = B°-1q”

E
Vg

where PB, QB, etc., are real numbers.

Substituting expressions (B44) and (B46) through (B49) into

which appear in equations

(B42) have the following

iT

iT

iT

iT

iT

iT

iT

iT

G S Uy S —

equations (B42) gives the following form of the complete solutionm,

applicable to the case in which the eight non-zero roots of the

characteristic equation are complex:

ul(Z)

u

0

+ Uz
u

-
C —
! o

A,

+ —é-cosh Xz cos
u c

0

cosh — cos
c

Yz

vz

+

>

+ —=
Yo

8
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_4
Yo

sinh —
c

Xz

Uz

sinh —
c

sin

Yz

Vz
c

+

sin —

u

Eio

(B46)

(B47)

(B48)

(B49)

(B50a)



u, (z) A A .
2 = ;2+(E—]-'-PB+u—4QB)coshz—z-csv—z
Y 0 0
(A A A A
+—4'PB'—l'QBsinh-U—zsinY£+-—SSB+—§TBcosh§Ecos-Y—z
kuo uo C (] uo uo [ Cc
(A 3 A5 5 X vz . 1o
+] 28" - 2 1°|sinh =E sir =+ — ¢ (B50b)
kuo uo c c u0 2

v, (z) K X
2 = [-—APD——lQD]coshU—zsinv—z-+[
ug v, c c

X
—5SD+—8TD sinhx—zcosY—z
uO u0 [ c

(B50d)

A
pF 4 & QE]sinh U2 cos Y2
u Cc Cc

+ 20z (B50e)
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where ‘Tl’ 22, XS and XB are new arbitrary constants related as follows
to the previous ones:

* + *
= At A
% *
= 1(A] - A))

*

AT+ aF
= A5 7
*
- 1(A - A

2)

(B51)

These four arbitrary constants and the fifth one, E;3 , are to be
evaluated from the boundary condition equations listed in the previous

section after equations (B42). These lead

simultaneous equations for

A E
u—8 cosh 2.4:] and -—]-'-Q :
0 Yo
[
N1 Ny Nyg
Nop Npp  Hyg
Nap N3 Ngy
Nai Na2 Nys
Ns;  Nsp  Ngy

A

ﬁi cash ﬂ’_’ Gi cosh —22,
0 0
Al
N 0 —= cosh
14 u
_0
A
N 0 b cosh
24 u
Y
K5
N'34 N35 21; cosh
K8
N44 N[‘5 T cosh
0
ElO
N5y N5 Lfé'

A

to the following sets of

A

u_5 cosh P
0
0
0]
= 0 (B52)
N,
Ng
WER—

for the case of point attachments at the ends of the trough lines only

(fig. 2(a));

63



(853)

64



The matrix elements

11

12

13

14

31

32

33

34

35

41

42

43

44

45

51

52

53

in these equations are

21

22

23

24

+ e
D+e

+ e20

(equation continued on next page)
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defined as follows:

\

\ (B55a)

% (B55b)

> (B55¢)

S (B55d)




54

55

o

41

I

2

42

43

2

44

¢4

(P

(s

(s

41

42

43

44

45

N4 -

- NSlcose

- N52cose

N53cose

1

- N54cose

- N55cose

Nscose

o)
tu cv - QC
a
sv + QC tu
T
tx E} - TC

sy + TC €;

ge)cose + (PD
ge)cose + (PD

gz)cose + (SD

~
Qr) cosf + (SD

66

& -1

~
+ QD tu

)
sv)

cv)

sv)

~
cv)

(B56)

} (B57a)

S (B57b)

(B58)

S (B59)




where

and

u(p

up

X(s

X(s

u(p

u(p

n

n

+

sin

sin

cos

cos

tanh —
c

X
tanh —
c

V(P

V(P

Y(S

C
Y (s

°I  °l§  °fE

olé

D

V(P

v (P

m
cv

- QD

(equation

67

% (B60)

> (B61)

tx &y)

Q &)

N A
tu 8v) 67

continued on next page)



and

H

10

€20

(s’ & -1 & &) - v

x¢sP x5 + 1€ &) + v
teE & - QM - ve
R RS +F &) + vk

E E A E

X" & -1 tx &) ~ ¥(s

X(S &) + Y(s

a
fl

1f _, 2 L_G_'(£z[
2 c sin 9cosf + 3¢ cJ

1,k _ £
- 2(2 Py + c)sinecose

lf
- sind

&5+
E N
g} - T tx g})
—/
\

2 |
(EJ (E + £ cosze + 2 < sin49'
c e k f

r (B62)

c c . 2
" cosb 2 7 sin ecose]

Substituting expressions (B44) into (B43), and making use of (B51l) and

the definitions of
formula for computing the shearing stiffness

cgo and co1 (eqgs.

(6a)), one obtains the following
F/2u0 of a single

corrugation in the case of the non-zero roots being complex:

(B63a)



E1o e |(*1 B RI+v
Vo= 1-%; - & -3llgs cosh 3 5
0 0 Ut + v
A, iR -va & (4 Xb)X tx & + Y &
+ | — cosh re 2 3 + —coshc— 2 3
Yo ) U°+ vV Y +Y
A, A A A
+ [1-1-8- cosh -}:—b]x syz— b4 ;x cy (B63b)
0 } X +Y

It will be noted that in equations (B51), (B52) and (B53) the

=

A

combinations _ﬁi cosh cﬁ , etc., are regarded as the unknowns rather than
— (]

A1

o etc. alone. This is done in order to avoid having extremely large
0

matrix elements in the simultaneous equations when b/c 1is large.
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APPENDIX C

SPECIAL CASE: f =0

In this appendix the special case f = 0 will be considered, in
which junctions lines and (:) coincide and form a line of points
of inflection of the cross sections (see fig. 6(b)). Only the end-
attachment conditions of figure 2(a) (i.e. point attachments at the
trough line ends only) need be considered in conjunction with the case
f =0, for any of the other two types of end attachment would completely
prevent cross-sectional deformation and therefore be tantamount to
continuous attachment.

Along the common junction line formed by junction (:) and (:) when
f = 0 the longitudinal deformation must vanish, and the vertical

displacement must also vanish. These constraints can be expressed as
follows:

uz(z) = 0 (C1)
and

[vl(z)sine]sine - [vz(z)]cose = 0 (C2)

The variational form of these equations is

6u2 = 0 (C3)

8v cosB/sinze (C4)

6vl 2

Introducing the foregoing conditions into equation (A5) gives the
following expression for the first variation of the TPE:

b
_ - F
S(TPE) = (6u0) J_b(Zcoou0 + 2¢,..u, - b)dz

01%1
b d2u1 1 dv0
+2 J P TE Yot Y4 %
-b dz
dv
1 2 cos
YA T T3 ](Gul)dz
sin

. 2 2
b du d°v d%v
-2 I [i d 1 + e ___Q_+ (e10 EQE%— + ezo)——iz}(dvo)dz
sin 0 dz

(equation continued on next page)
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2
1y 491 ot ( cosd . . )d_v
2 11 dz sin26 10 1 2e 20 d 2
2
dv
- (eii °°84e + 2e)) °°sg + ") (8v,)dz
sin © in"e 2274z~
du1 b
Y@hy g )|
dv
coso cosf ] 0
+ |[du, — 5+ 2le, —5—+ e, |57—
[ 111 sinze ( 10 Sin2e 20)dz
b
2 dv
0 cosb 2
+2(e!! 252 4 2e!! S22 4 el )= |(8v,) cs5
11 4040 12 4,2, 227dz 27| (€5)
where
\
€0 " Gt(e + kc0326 + %)
1
e = " E—Gt(Zk + f)sin6 cosé
= - l-th sin6
€20 )
J J
e!! = Gt sinze(k + £—cosze) + G! 1 + 2 cosze o (C6)
11 2 2
e k
e!! = X gtf sine + G'fz
22 2 k2
J
el! = 1 Gtf sinze cosh + G' 2 cosh
12 2 k2
/

At this stage the vanishing of f has not yet been introduced
into equation (C5). 1In order to incorporate this condition, f may be
allowed to approach zero in all terms of equation (C5) except those
associated with frame bending, that is ajj, ajp and app . The strain
energy of frame bending for the case f = 0 cannot be obtained
correctly by letting f -+ 0 in the equations for ajj;, 8;, and azpy —
equations (12) and (13). The reason for this is that if condition
(C2) is first imposed (as it has been) to prevent vertical displacements
of stations (:) and (:) » the subsequent imposition of the condition
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f +0 will lead to clamping (zero rotation) at the vertex formed by
stations (:) and as they meet, rather than to the condition of free
rotation corresponding to the point of inflection (zero moment) which
should be present at this vertex. In order to obtain correctly the’

zero moment condition existing at the vertex, f must be allowed to
approach infinity, rather than zero, in those terms of equation (C5)
which arise from strain energy of frame bending, namely ajj;, aig,

and ajg2 . Doing this, one obtains the following limiting values of ajjl,
aj2, and a22 for use in equation (C5):

\
- =2 \ + A [ 2 26 - ; E-co 9 : a
211 52e3 Ay 20k ©°s 12 k) €°8 = 21
D ~ e 2 17 e ~
312 ;’z:i[Azz[EJ cosb - 5 449 E] = 3y, ¢ (C7)
. 2 .
D e _
28, * 23 Azz(ﬁ) = 8y J
Be
where
B 212801+ 8
B =121+ (C8a)
~ e 3 e 1
A, = 432[?] L+
A, = 432[9J3(1 + 8 L (C8b)
22 ° k K
- e 3 e
Ay = - 864[EJ @+ )

Incorporating the above limiting values of aj1, a;4, and ayo
into equation (CS) and letting f approach zerc in equations (C8)
leads to the following expression for 6&(TPE) :

b
S§(TPE) = (8u,.) J (2¢c..u, + 2¢c..u, - EI-)dz
0 -5 b

00" * 2%1%1
. b dzul 1 dvd
*2 J_b['bn 7 %ttt Y &

dv

1 cosH 2

todn T @ ](‘5"1)dz
sin 6

(equation continued on next page)
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2 12
-2 Jb (l du1 it d Yo - cos® d Va
~-b

i e e (8v,)dz
'2 10 dz 00 dz2 10 51026 d22 J 0

2
- - - d"v

- (e!, 5988 4 5oy c080 +-eéz)'—2'2"](6v2)dz
dz

(c9)

where
' 2
= Gt(e + k cos“6)

- Gtk sin@ cosb

]

3.3
' = Gtk sinZ6 + c'(—zl- + —% cosze)
e

k } (c10)

;l m G' _i
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Differential equations and boundary conditions. - The vanishing of
8§ (TPE), equation (C9), provides the following equations governing ul(z),
vg(z), vz(2) and F :

b
4coouob + 2c01 J_b uldz -2F = 0 (C11)
2 N\
du dv dv
1 1 0 1l cos?f 2
-b +e . u +cu +5d  —+5d = =0
11 d22 010 1171 2 710 d=z 2 11 sinze dz
2 2
du - d'v - dv
1 1 0 cosH 2
=d, —+ ¢’ +e! ——%X =0 > (C12)
2 10 dz 00 d 2 10 sin2e dzz
2 2
' 1 cosB 1 -, cosé d Yo ’ d'v _
827 " 7% . 2. d% "0 2. .2 °»7z -0
sin 60 sin" 6 dz dz J

> (C13a)
~ dv dv
cos® cosd 0 2
d u, + 2e! —— ——= + 2¢! ——] = 0
( 11 sinze 1 10 sinzé dz 22 dz —+h
where \
~ cosze - cosf ~
al = a + 2a + a
22 11 sin4e 12 Sin2e 22
p (Cl4)
- 2 -
' = v cos’H v cosb '
2 ® 11 . 4. T2, -t ey
sin 6 sin" 0
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Besides equations (Cl3a), the boundary condition

vo(tb) = 0

of the general case applies also to the present case.

(C13b)

Particular solution of the differential equations. — A particular

solution of equations (C12) having the proper parity with respect to z

is
\
w = -0
1 13 0
v, = 0 ? (C15)
Vo T 0 |
Complementary solutions of exponential form. - The complementary

solution, which is the solution of the homogeneous system obtained by

omitting the term

form

Substituting these expressions into
excluded, one obtains the following

u, = Alet?
v, = D'e"?
Vg = E'e’?

cosf

1
-3 a
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-
10"

cos® "2
— 5T
sin 6

-2

r

equations (C12) with the ug
conditions on A', D', E' and r :

. ]
A'

co1up f£from equations (C1l2), is first assumed in the

N

? (C16)

term

0 (€17)




which lead to the following characteristic equation for r :

by P oe,  -ta st Ll g
11 11 211 sin26 2 10
l-d cosd al - e! ;2 _ ;, cosé ;2
2 11 sinze 22 22 10 Sin2e
1,y 5 v cos® 2 _ ;, ;2
2 10 10 . 2 00
sin 6
Equations (C18) when expanded becomes
= 0

Eoz[%]z] + [1220 + koz[t]z]iz . [1140 . 1;42[%)2]{{4 ,

where

1

14

02

20

22

40

42

(g

% ~% 9 1 k 2% 1 % % ~%
+ [}11(610) + () eg0 - E'dlldloelé]

1,.% 2
AT ]

k “k ~k
11%00%22
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(C19)

(c20)

\ (c21)




with

\

~ 3 - 2

* (c/e) r 2 - e ~ [e} ]

a = .~ A .,cos" 0 - A, — cosb + A -

22 12(1 - v2)8281n4e 11 12 k 22k

X _ ek .2

0 - ¢ + "y cos 0

> (C22)

~%

10 = - f-sine cosd

~% 1G' 1 (c 2 c)
e = == — cos 6 + -

22 3E _ynéole k /

Denoting the roots of equation (C1l9) by Ry, Ry, ..., Rg, the following
properties may be postulated for them:

R = - R R = -R (C23)

R5 = R6 = 0 (C24)

The corresponding values of r will be denoted by r;, r2, ..., Tg -

Thus, five solutions of the homogeneous system having the form of
equations (C1l6) exist, corresponding to the five different roots of
equation (C19). For each such_solution the relationships which must
exist among the coefficients A', D', and E' can be obtained by
substituting the_particular value of r into equations (Cl7). Denoting
by A!, D!, and E! the values of the coefficients associated with the
partigulag root r"= r. , the following relationships are implied by the
last two of equations™ (Cl7) for j = 1,2,3 or 4 :

1 T. 7 T- T
2 -2 ~ cosf 2 T 1 cosf =~
ay,c” - e} (cr,) - el ———(cr.) D!/A! = d. e ——5—(er,)
22 22773 10 sin29 i 373 2 11 sin29 i
_ ~y cosb 2 _ T \2 At ld -
10 Sinze( ) eoo(crj) Ej/Aj 5 10c(crj)
b —J . - _ _j
(Cc25)
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Substituting for aj,, ebo, elO’ e22, dig and dqy
equations (Cl14), (CI0), and (6b), one converts equation (C25) to

where

~

L1

12

11

[ a4

12

| gl

22

-1 - b = -
iy e 1l G cos® x o
L D!/A! == d” R
12 b | 2 E sinze 117§
- - - 16 -~
] \] el * R
- B} /A] 7% ks
d L i | ]
G k cosze ~2
( ] (23, - e22R M A
sin ©

The solution of equations (C26) is

where

§Ev22 _ 2 911"

i E _{Lll 10 " ti2 T 2

~ - D
D!/A! .
i’ Y3
E!/A" JE
i3 3
R
G~ coso

*
@ d Lo 10)/(L11 23 ~
sin"®

iy cosf
- L 41 )/(Lll 22
sin 6
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2

2
12

12>

)

their definitions from

(C26)

? (cz27m)

(C28)

L (€29)




From equations (C29) and (C23) it is .evident that
“D “D “D D E . E CE . _ “E
Yo ® ¥y s Yu T Y3 Yo T UYy s Y, 2 (€30)

For j =5 (; -rg = 0) equations (Cl7) give

¢ 0 0 Al 0
' - D ' =
0 ay, © D} 0 (€31)
0 0 0 éé- 0
N 4 L2 |
whence
Ag =0 -0, ig = indeterminate (C32)

- . Summing the four solutions of the form (C1l6) corresponding to
rer; through r, and making use of equations (C28) and (C30), one obtains

p— e _1 ~R£
N Y
ul 1 1 1 1 Ale
Sz
vwli=1v¥Y -¥ -1 ae 1€ (€33)
2 Y1 51 Y3 Y3 2
-z
v “E _lE °E _ -E ;,eRs'E
0 Y1 Yy Y3 Y3 3
L. L .
Tz
_R_
N 3¢
Ale
RO

Expressing the exponential functions in terms of hyperbolic functions and
discarding the terms which do not have the proper symmetry (in the case of
up) or antisymmetry (in the case of wvj and vg) with respect to z , one
converts equations (C33) to
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1 1 3
A Rz . R,z
D — 1 D —~ 3
v, Yy Al sinh P + Y3 A3 sinh e (C34)
Rz - R,z
E ¢ 1 < 3
v0 Yl A1 sinh + Y3 A3 sinh

where A. and A, are new arbitrary constants arising from certain linear
combinations of"the previous ones.

. From equations (C32) and (C1l6) the following solution corresponding
to 1 =15 = 0 is obtained:

u1 = (

v, = 0
= - ]

Yo Eg

~

Since vy = Eg = constant 1is even in 2z , rather than odd, the constant
El may be equated to zero. Thus the pertinent solution contributed by
tﬁe root f =rg =0 1is identically zero.

Complementary solution not of exponential form. - The existence of
a repeated root (see eq. (C24)) indicates that the homogeneous system has
an additional solution that is not of the form of equations (C1l6). This
additional solution can be obtained by inspection if one postulates that
-1t has the following form consistent with the evenness of uj and the
oddness of vj and vj

u, = A

1 6
v, = Dé z/c (C35)
Vo = ié z/c
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Substitution of this assumption into equations (C12) with the ug term
omitted shows that equations (C35) are indeed a solution of the
homogeneous system provided that

|-
D6 0
(C36)
' T o
Eg = &4
where
E = - 2cc11/d10 (c37)
Thus the following additional solution of the homogeneous system is
obtained:
- ~|
u1 A6
v, = 0 (C38)
= =
Yo £ A6 z/e

Complete solution of the differential equations (Cl2). - Summing
the particular integral (C15) and the various solutions (C34) and (C38)
of the homogeneous system, one obtains the following complete solution
of equations (Cl2) having the pertinent symmetry and antisymmetry
yroperties:

c _ Rz _ R,z ~
u, = - 0L u. + A, cosh —l—-+ A_ cosh —é—-+ Al
1 c 0 1 c 3 c 6
11
R z R,z
"D 1 D+ 3
= —_— —
v, Yy Al sinh - Y3 A3 sinh p (C39)
R,z z
- B 1 "E + 3 = 2
Yo Yy Al sinh —E—-+ Y3 A3 sinh —E—-+ £ A6 c
Evaluation of the arbitrary constants. - The three arbitrary

constants Ki, KS and Aé can be determined from the boundary conditioms,
equations (Cl3a) and (C13b). The following equations are obtained which
can be solved simultaneously for the three constants:
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where

11

12

21

22

23

31

32

33

B 1z Rb| |
1 1
Pll P12 0 uo sinh 0
A. R.b
P.. P P 2 gtnh —=2-| =0
21 22 7/ 23 u, c
~ P
Py P3 Paz | | A6/% 3
- - e — L
= Rl
= R3
- ~“E
"1
- ~“E
Y3
=b
= E —c—
2 - 2
cos® ~“1°D cos 6 E t
= Jax £987 2R1[y <l(--———+—e* [ ] >
11 sin26 1\e sin26 G 22
R.b
“E - cosb 1
+ v ——] coth —
1 10 n2e c
2 2
cosf k cos™@ E ~ t
- dax _+2R[Y +Ea(E) >
{11 sinze 33 s1n26 G 22%c
R.b
E cos® 3
+ 732 2] oth —
sin™ 6
cos® ~ — cosH
a dk = 4 2ek f ——
11 sinze 10 sin?'e
2
- g cos6/sin’ @
111 + e/k
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Relationship between F and uo. - With ul(z) determined in

terms of up (the first of eqs. (C39)), equation (Cll) can be used to
obtain the following relationship between F and u, ¢

F Gtb -
Fo— = et (C42)
Yo
where
. A R.b ).
y = 1~ le— ;]—'sinh—%—J,,—c—
1+E 0 Rlb
A R.b A
- [—é-sinh 3l .8 (C43)
Yo R,b Yo

A relative shear stiffness §Q can be defined the same way as in the
general case. Equation (29) of the main body of the paper applies with
f set equal to zero and ¢ replaced by ¥

Stresses. — The longitudinal normal stresses are identically zero

at stations . » 3@ and . The non-zero longitudinal normal
stresses o@ along junction are obtained from the equation
du

L (C44)

0'@ = E'dT

Eliminating u; through the first of equations (C39), one obtains the
following expression for the dimensionless stress parameter o®c/E'u0 :

. Rz A&, . R,2
Rl sinh = + o R3 sinh P (C45)
0 0 0

Q

®

0

[ I'__?I

The dimensionless middle-surface shear stresses, as obtained from
table 2 and equations (C39), are
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0 0
_ N r (C46)
T, ,C A R z
12° _ __¢c/k 71D g e _JEg AL
Gu, ~ T T+e/k’ uO[Yl Rjeotb ™M R1C°‘°9]°°Sh c
A R z
3(°D ¢ c_ Eg 3
+ % Y3 R3C°te "% Y3 R3cose]cosh c
~l
A (et J
- uo (k + £ cosGJ

where the subscripts 01l and 12 stand for the plate elements 0l and 12
respectively.

From the rates of twist in table 3 and the displacement expressions
(C39) the following expressions are obtained for the extreme-fiber shearing
stresses due to the twisting of plate elements 01 and 12 respectively:

G?i _ E_cose W(z)
0 sin 6
(C47)
! .c
12 . _t_1 \
G'u. k. W(z
sin 6
where _ - _ -
A z A R, .z
_ g 1%, 53 3
W(z) = ™ Yy Rjcosh ——+ ™ Y4 Rycosh —= (C48)

The frame bending moments and associated extreme fiber bending
stresses are zero at statiomns @ s @ s @ and @ . Referring to
equations (D44) of reference 1, one obtains the following dimensionless
expression for the extreme fiber transverse bending stresses c<:>'
along junction



G@ [
2|v
Fe " -—6—5%%..—1—2— 3ECO39+3[-E} ;2- (C49)
0 l1-~wv Bsin"0 0

in which o ' 4s positive for compression in the upper fibers, tension

in the lower fibers (see fig. 5).
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APPENDIX D

SPECIAL CASE: e =0

Figure 6(c) shows the special case e = 0 , in which the plate
elements at the troughs are of zero width, with the result that the
two adjacent inclined plate elements meet to form a vertex along the
trough line.

This special case can be obtained from the general case (appendix

A) by first imposing along the junction line (:) the same displacement
conditions as exist along the junction line (:) , namely

(D1)

|
(=]

ul(Z)

0l
o

vl(z) (D2)

and introducing these conditions (and their variational forms Gul =
Sug, Svy = 0 ) into the &(TPE) expression, equation (A5). This
will eliminate from the §(TPE) those terms arising from longitudinal
extension and twisting of plate elements Ol and 45.

In order to eliminate the terms associated with middle-surface
shearing of these plate elements, the condition e + 0 should then be
introduced into all the remaining coefficients except those associated
with the strain energy of frame bending (all, a12’ azz).

The condition e > 0 will not lead to the correct strain energy of
frame bending because this condition, imposed after condition (D2),
implies clamping (zero rotation) rather than free rotation along the
trough lines in the limiting case. In order to obtain correctly the
zero moment condition existing along the trough lines the condition
e > ® must be imposed instead in those terms (ajj, 212, ajp) associated
with frame bending of the cross sections.

Applying the above procedure to equation (A5) gives the following
expression for §(TPE):

b
F
§(TPE) = (Guo) J (2c 00u0 + 2c 1299 ~ B)dz
-b
B d*u, L dv,,
+2 J ['bzz 7 F C12% T 2% Y790 32
-b dz
dv
L1 2
2 d22 P )(Gu )dz

(equation continued on next page)
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®o(y  du d%v, a%y,
- ZJ [E d0d * o0 2 * o0 7 [
-b dz dz
b (_ 1 du2 dzvb dzv2
+ 2 J [azz"z 2% % T %0 7 %22 2 [V
-b dz dz
[ du2 b
+ 2b22 Fre (6u2)
L -b
3 dv0 dv2 b
+ L(dzzuz + 2e20 P + 2e22 ?z—)(GVZ) & (D3)
where
00 = Gt/k (D4)
& = Gt(k cos>e+ ) (D5)
00 2
3 -ls(l + 2 k co::*.e)2
- E ()" £ £
42 ~ 7 \k K (06)
2(1 - v©) 1+ 2 3
Differential equations and boundary conditions. - From the vanishing
of §(TPE), equation (D3), the following equations governing uy , vy and
vy are obtained:
_ b
hegguoP + 229, J_b u,dz - 2F = 0 ®7)
\
dzu2 1 dv0 1 dv2
“Pa 7 Tttt T2 do0d@ t2d2®:m = °
1 du2 d2v0 dzv2
7903 Yo7z Y07z =0 ¢ (P8)
dz dz
du d2v dzv
a, v, - 3 d 2. e 0 _ e 2 . 0
22°2 2 722 4z 20 , 2 22 . 2
dz dz J
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(D9a)
dv dv2
{dzzuz Y203 T l=+b =0
Besides equations (D9a), the boundary condition
vo(tb) = 0 (D%)

of the general case applies also to the present special case.

The above development is for the case of point attachments at the ends
of vhe trough lines only (fig. 2(a) or 2(d)). When e = 0 the presence of
additional attachments at the ends of the crest lines (fig. 2(b)) would
completely prevent cross-sectional deformation and therefore be tantamount
to continuous attachment.

Particular solution of the differential equations. — A particular
solution of equation (D8) having the proper parity with respect to z is

u, = - flg u )
2 9y 0
Vo = 0 > (D10)
vy = 0 )
Complementary solutions of exponential form. — The complementary

solution, which is the solution of the homogeneous system obtained by
omitting the term cjyug from equations (D8), is first assumed in
the form

\
u, = Berz
_ X T2
v, = De > (D11)
VO = Eerz
/
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Ch m Em—————ams E o m—— T

Substitution of these expressions into equations (D8) with the cjjug
term omitted leads to the following conditions on B, D, E and ¢ :

B ] ~ ] [~
.2 1, . I P
b22r 59 5 d22r 2 dzor FB 0
1 ~ - ~2 ~2 -
-3 d22r ay, - e5,f - ey D 0 (012)
1 - ~2 ~2 -
-3 dzor - eyt - €T E 0
from which arises the following characteristic equation for ro:
'\2 1 - l -~
baat = S 77 dpoF =2 9207
1 ~ - ~2 ~2
-3 d22r 8,9 = €,,T - eygT = 0 (D13)
-ta,t e, ot - enoi’
2 20 20 00
Equation (D13) when expanded becomes
A [£)2 - - (ty2la2 |- ~ (£)2 ]l 52
[koz(cj ] + [kzo + kzz(c] ]R + [kAO k5 RO R2 = 0 (D14)
where
R = eof (D15)
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iy Gl2 — % akk — 1 * 2
LY [EJ a"‘22[°22‘eoo % (d3p)

~ G311 2 1 2 2 -
= |Z1°l*cq* k% — = dk_ dk_ ekk % (k%)< - ok _akkekk
k20 (EJ [4(‘120)- 35 — 7 95od% 958 * <3038 - <5,eh0e53
l 2 ~
=(d* %%
+ 7 eooJ
(D1s6)
- G2 ¢'l1 2 — — A E' G — -
= |27 =2—=(ax - ok ok ekk l - 2 2 gk bk ekk
oY) [EJ E [4(d20) 32 °22e22eoo] E E 232°32%00
. E'(C)? akkokk *%)2
= 21= % -
ko = % [E) b3,ledess - (e59)°]
ﬂ = EL.Q.El.b* ekkak
42 E EE 22700722
with
c)2 ¢ k 2
- . [k] f(l + 2 7 cosH)
22 2 -V + 25
(D17)
~ k 2 1 f
- 1z
eOO s cos © + 7 o
Denoting the roots of equation (D14) by ﬁl, ﬁz, ceny ﬁ6’ the following
properties may be postulated for them:
R2 = - Rl R4 = - R3 (D18)
R. = R, = 0 (D19)

The corresponding values of r will be denoted by El’ f2, veey 26 .
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Thus, there exist five solutions of the homogeneous system having
the form of equations (D1l). For each such solution the relationships
which must exist among the coefficients B, ﬁ, and £ can be obtained
by substituting the specific value of r _1into equations (D12). Letting
BJ, Dj, andAE denote the values of 8, D, and E associated with the

root "~ T =71 , the following relationships are implied by the last two
of equations (D12) for j = 1, 2, 3, 4 :

- 2 A~ 2 av2 so,0 1 N

a,y,¢" - e22(c5) - e20(c§) Dj/Bj §'d22c(cﬁ)
- (D20)

Ay 2 ~ an2 Z 4 1 o

- e20(c€? - eoo(c5) _ Ej/Bj §.d20c(c¥3

Substituting for Eéz, €995 €20> 2pgp, dgpz and dyg their definitions from
equations (D5), (D6), (6b) and (A2), one converts equations (D20) to

E ~ s s ] i -]
I Lia | |24/

>

D21)

>

12 22 3/%5

where

~ 2f — 22} e .22
= —_ * - — ak% - — ek%k
I (cJ 232 " E ezsz} E ®53%y

=
]
1
!

o
*
*

2

L2 = " E %20 (D22)

22

(D23)
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where

°D 1~ 6, ... _1 s ~2
= — — P * -
Y5 2 By 5opdiy = L1950/ (Lyglyy = 1yy)
(D24)
B La Ci i ary/Goi -2
\ 5 Ry §(L11950 - Lypdfy)/ (Lyglop — Lyp)
From equations (D24) and (D18) it is evident that
D _ D sD_ _aD E_ _E  E_ _ :E
Y2 = Yl [ Y4 = Y3 ’ 'Yz = Yl > Y4 Y3 (D25)
For j=5 (= §5~= 0) equations (D12) give
. 9 - -
Cyy 0 0 B5 0
0 23y 0 Ds 1 - |O (D26)
0 0 0 E5 0
whence
B5 = D5 = 0 , E5 = indeterminate (D27)

Summing the four solutions of the form of equations (D1l) corresponding
to £ =1ty through T, and making use of equatii.s (D23) and (D25), one
obirains

- Sl & ]
u, 1 1 1 1 Ble

~ g

e st _mx» o _C 3 e'Rl ¢
2 Y1 Y1 Y3 Y3 2

ﬁ z (D28)
" ;E _ ;E ;E _ ;E Be3c

| 70 | ! 1 3 3 | 3

A

ﬁ e_RS c
4

— —

92



Expressing the exponential functions in terms of hyperbolic functions,

and taking into account the fact that uj must be even in

z , vy and

vg odd in =z , one converts equations (D28) to
A~ PN \
Rlz RSZ
= .3 _— * —_—
u, B1 cosh z + B3 cosh c
R,z R,z
~D 12 . -D 3 L
= * — * —_—
v, Yy Bl sinh - + Y3 B3 sinh < (D29)
R,z R,z
~E 1 ~E 3
= ¢ —_— X —_—
Vo Y1 Bl sinh o + Y3 B3 sinh c )

where BI and Bg are new arbitrary
combinations of the previous ones.

From equations (D27) and (D11)
to T e = 0 1is obtained:

)

Since vy = ES = constant 1s even
E5 may be equated to zero. Thus t
the root r = r5 = 0 is identicall

Complementary solution not of

constants arising from certain linear

the following solution corresponding

>

in =z , rather than odd, the constant
he pertinent solution contributed by
y zero.

exponential form. - The existence of

a repeated root (see eq. (D19)) ind
has an additional solution that is
This additional solution can be obt
that it has the following form comns
the oddness of v5 and vg :

)

icates that the homogeneous system
not of the form of equations (D1l).
ained by inspection if one postulates

istent with the evenness of wujp and
A 3
Bg
D6z/c > (D30)
E6z/c
/
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Substituting this assumption into the system of differential equations
(D8) with the cjguy term omitted shows that equations (D30) are indeed
a solution of the homogeneous system provided that

D6 = 0
A ~n (D31)
Eg = EBg
where
E = -2 ceey,ld, (D32)
Therefore the additional solution of the homogeneous system is
= B \
u; = B,
vy = 0 > (D33)
\ €B6z/c
Complete solution of the differential equations (D8). - Summing the

particular solution (D10) and the various solutions (D29) and (D33) of

the homogeneous system, one obtains .the following complete solution of the
differential equations (D8) having the pertinent symmetry and antisymmetry
properties:

~ ~ N
c12 R,z R,z -
u = = ——y, + B* cosh — + B%*¥ cosh — + B
2 c 0 1 c 3 c 6
22
R.z R,z
“D 1 ~D 3
= % —_— %x —_—
v, Y1 B1 sinh - Y3 B3 sinh = &(D34)
R.z R.z
~E 1 ~E 3 an
= % —_— % —
A \1 Bl sinh —+ Yy B3 sinh —— + £B6z/c
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Evaluation of the arbitrary

constants. - The three arbitrary constants

Bf, BY, and By can be determined
(D9a) and .(D9Db). These boundary
defining B%, Bg, and Bg

from the boundary conditions, equations
conditions lead to the following equations

B i —ﬁ* R b1 i
1 1
Q, Q, O % sinh 0
0
B% ﬁ3b
Q1 Qy Q4 S sinh — =10 (p35)
Q3  Qp Qs | Bglyy Q,
T p— — r— L -
where
. \
Q; = By
Qy = Ry
~E
Q, "
_LE
Wy = 75
. _f(D36)
Q,; = £ ble
2 R.b
~ G' t° — D E 1
= * *%k —_— 3 *%k < —_—
Q3 tay) + 2R, [(e35 + 5 2 52097 * e3f 9 1coth —
2 R.b
~ G' t“ —, . ~D ~E 3
= * * % —— %% —_—
Q35 {af) + 2R;l(e33 + 3 2 52073 * e3% vyllcoth
= * *% A
Q33 df; t 238 ¢
y
2
1+ 2 3
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Relationship between F and Uy - - With u5(z) known in terms of

u (the first of eqs. (D34)), equation (D7) yields the following relation-
sgip between the shearing force F and the relativé shearing displacement
2un

0

F _ Gtb -
Zuo " kY (D38)
0
where
. B% R.b
P .11 k-(‘_}smh_l_]n_
1+23% Y R b
B% R.b B
- [-11—3 sinh i],\L- - Gﬁ (D39)
0 Rp

Equation (D38) can be used to compute the overall shearing stiffness of
a single corrugation.

A relative shearing stiffness Q , the ratio of the shearing stiffress
(D38) to that of the same corrugation with continuous end attachment
producing uniform middle-surface shear strain throughcut the sheet,
is given by

_ 1£.°
Qa = (1+ 3 k)¢ (D40)
Stresses. - The longitudinal normal stresses are identically zero at
stations s (:) s (:) and (:) . The non-vanishing longitudinal normal
stresses o© along junction line , obtained from the strains dup/dz ,

are given in~dimensionless form by

‘@° B Rz BY R,z
—=— - = — R sinh —— + —= R_ sinh —— (D41)
E u0 u0 1 c u0 3 c

The dimensionless middle-surface shear stresses, as obtained from
table 2 and equations (D34), are given by
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12
Gu

~p BY .
- cose[yf Gl-Rl

0

c
Gu = -2 f u

T23° (@ (
0 0

~

Yo

where the subscripts 12 and 23
respectively.

From the rates of twist in
(D34) the following expressions
stresses due to the twisting of

where
“D

W) = Y151

The frame bending moments
are zero at stations ,

\

R z o B¥ ﬁ z hﬁ

cosh-L+yE—3R cosh-—3—+ E—g
c 3u, 3 c u

(4] 0

g(DQZ)

B* R.z B% R,z

~E 71 1 ~E 73 3
Y1 R1 cosh —Ef-+ Yy 5o R3 cosh p

0 0

B* R.z B%x R,z

+ 88 +sine§D—];R cosh—l'—+§D-éR cosh ——
1 u, 1 c 3 U, 3 c

/

represent the plate elements 12 and 23

table 3 and the displacement expressions
are obtained for the extreme-fiber shearing
plate elements 12 and 23 respectively:

t—
= —EW(Z)
(D43)
t —
= 2 E—cose W(z)
ﬁ z B* ﬁ z
1 “D "3 7 3
cosh = + Y3 ——-R3 cosh e (D44)

and associated extreme fiber bending stresses
’ and (:) . From the first of equationms

(E38) of reference 1, one obtains the following dimensionless expression for

the extreme fiber transverse bending stresses ¢

' along junction line

1+ 2 l—c-coe.e vz(z)

£ £
t (D45)
f 142k "o
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(a) Point attachment at the ends of the trough lines.

(b) Point attachment at the ends of the trough lines and crest lines.

A
//////U///W/// ///////Z/////U///////////

(c) Wide attachment at ends of trough lines only.

(d) Idealization of (c) used in the analysis: Point attachments at
the ends of the trough lines, and point attachments permitting
longitudinal sliding at the junctions of the trough plate elements
and the inclined plate elements.

Figure 2. - Types of attachment considered at the ends of the corrugations.
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(a) Diagram of cross section.

(b) Assumption regarding
longitudinal displace-
ments.

(c) Component displacement
modes for displacements
in the plane of the
cross section

Figure 3. - Diagrammatic representation of assumptions regarding displacements.
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Figure 4. -~ Schematic .representation of a

single corrugation.
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(b) Special case ’f =0

| |
I |
b P —

(c) Special case e = 0

Figure 6. - General and special cross~sectional geometries
considered in the analyses.
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of the corrugation for a particular geometry with wide

attachments at the ends of the trough lines.

.2
~ Variation of stresses and displacements along the length

Figure 18
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